
FINAL REVIEW-ADMIN

Final Review-Admin

1) Final is Saturday Dec 15 1:30-3:30 in CSI 2117 (usual class)
2) Can bring one sheet of notes.

Can use both sides
Can be typed
You can put whatever you want on it.
Can copy a classmates and use it but thats stupid
Can try to cram the entire course onto it but thats stupid

3) No calculators allowed. Numbers will be small.
4) Coverage: Slides/HW.
5) Not on Exam: Guest lectures with two exceptions: LWE (as I
did it), Bitcoin.
6) We hope to grade it and post it Saturday Afternoon.
7) If can’t take the exam tell me ASAP.
8) Advice: Understand rather than memorize.

FINAL
REVIEW-CONTENT

Alice, Bob, and Eve

I Alice sends a message to Bob in code.

I Eve overhears it.

I We want Eve to not get any information.

There are many aspects to this:

I Information-Theoretic Security.

I Computational-Theoretic Security (Hardness Assumption)

I The NY,NY problem: Do not always code m the same way. If
always coded same way then CPA-insecure

I Private Key or Public key

I Kerckhoff’s principle: Eve knows cryptosystem.

I History: How much computing power does Eve have?

Private Key Ciphers

Single Letter Sub Ciphers

1. Shift cipher: f (x) = x + s. s ∈ {0, . . . , 25}.
2. Affine cipher: f (x) = ax + b. a, b ∈ {0, . . . , 25}. a rel prime

26.

3. Keyword Shift: From keyword and shift create random-looking
perm of {a, . . . , z}.

4. Keyword Mixed: From keyword create random-looking perm
of {a, . . . , z}.

5. Gen Sub Cipher: Take random perm of {a, . . . , z}.

All Single Letter Sub Ciphers Crackable

Important: Algorithm Is-English.

1. Input(T) a text

2. Find fT , the freq vector of T

3. Find x = fT · fE where fE is freq vector for English

4. If x ≥ 0.06 then output YES. If x ≤ 0.04 then output NO. If
0.04 < x < 0.06 then something is wrong.

1. Shift , Affine have small key space: can try all keys and see
when Is-English says YES.

2. For others use Freq analysis, e.g., e is most common letter.

3. If message is numbers (e.g., Credit Cards) or ASCII (e.g.,
Byte-Shift) there are still patterns so can use freq analysis.

Randomized Shift

How to NOT encode the same m the same way:
Randomized shift: Key is a function f : S → S .

1. To send message (m1, . . . ,mL) (each mi is a character)

1.1 Pick random r1, . . . , rL ∈ S . For 1 ≤ i ≤ L compute si = f (ri).
1.2 Send ((r1;m1 + s1), . . . , (rL;mL + sL))

2. To decode message ((r1; c1), . . . , (rL; cL))

2.1 For 1 ≤ i ≤ L si = f (ri).
2.2 Find (c1 − s1, . . . , cL − sL)

Note: Can be cracked.

The Vigenère cipher

Key: A word or phrase. Example: dog = (3,14,6).
Easy to remember and transmit.
Example using dog.
Shift 1st letter by 3
Shift 2nd letter by 14
Shift 3nd letter by 6
Shift 4th letter by 3
Shift 5th letter by 14
Shift 6th letter by 6, etc.

Jacob Prinz is a Physics Major
Jacob Prinz isaPh ysics Major

encrypts to
MOIRP VUWTC WYDDN BGOFG SDXUU

Can be cracked by guessing key length L and doing Freq Anal on
every Lth letter.

The Matrix Cipher

Definition: Matrix Cipher. Pick n and M an n × n invertible
matrix.

1. Encrypt via ~x → M(~x).

2. Decrypt via ~y → M−1(~y)

We’ll take n = 30.

1. Easy for Alice and Bob.

2. Key M is small enough to be easy for Alice and Bob but too
large for Eve to use brute force.

3. Eve can crack using freqs of 30-long sets of letters? Hard?

4. Ciphertext only might be uncrackable.

5. Can crack from message-cipher pairs.

The Matrix Cipher

Definition: Matrix Cipher. Pick n and M an n × n invertible
matrix.

1. Encrypt via ~x → M(~x).

2. Decrypt via ~y → M−1(~y)

We’ll take n = 30.

1. Easy for Alice and Bob.

2. Key M is small enough to be easy for Alice and Bob but too
large for Eve to use brute force.

3. Eve can crack using freqs of 30-long sets of letters? Hard?

4. Ciphertext only might be uncrackable.

5. Can crack from message-cipher pairs.

One-time pad

1. Let M = {0, 1}n

2. Gen: choose a uniform key k ∈ {0, 1}n

3. Enck(m) = k ⊕m

4. Deck(c) = k ⊕ c

5. Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m

PROS AND CONS Of One-time pad

1. If Key is N bits long can only send N bits.

2. ⊕ is FAST!

3. The one-time pad is uncrackable. YEAH!

4. Generating truly random bits is hard. BOO!

5. Psuedo-random can be insecure – I did example.

Public Key Ciphers
Eve can go . . .

Public Key Cryptography

Alice and Bob never have to meet!

NT Algorithms needed for Public Key

All arithmetic is mod p. The following can be done quickly.

1. Given (a, n, p) compute an (mod p). Repeated Squaring. (1)
≤ 2 lg n always, (2) ≤ lg n + O(1) if n close to 22

m
.

2. Given n, find a safe prime of length n and a generator g .

3. Given a, b rel prime find inverse of a mod b: Euclidean alg.

4. Given a1, . . . , aL and b1, . . . , bL, bi ’s rel prime, find x ≡ ai
(mod bi).

5. Given (a, p) find
√
a’s. We did p ≡ 3 (mod 4) case.

6. Given (a,N) and p, q such that N = pq, find
√
a’s.

Number Theory Assumptions

1. Discrete Log is hard.

2. Factoring is hard.

3. Given (a,N), find
√
a without being given factors of N is

hard. (This is equiv to factoring.)

Note: We usually don’t assume these but instead assume close
cousins.

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks random a ∈ {1, . . . , p− 1}. Alice computes ga and
sends it to Bob in the clear (Eve can see it).

4. Bob picks random b ∈ {1, . . . , p − 1}. Bob computes gb and
sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab.

6. Bob computes (ga)b = gab.

7. gab is the shared secret.

Definition
Let f be f (p, g , ga, gb) = gab.

Hardness assumption: f is hard to compute.

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks random a ∈ {1, . . . , p− 1}. Alice computes ga and
sends it to Bob in the clear (Eve can see it).

4. Bob picks random b ∈ {1, . . . , p − 1}. Bob computes gb and
sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab.

6. Bob computes (ga)b = gab.

7. gab is the shared secret.

Definition
Let f be f (p, g , ga, gb) = gab.

Hardness assumption: f is hard to compute.

ElGamal is DH with a Twist

1. Alice and Bob do Diffie Helman.

2. Alice and Bob share secret s = gab.

3. Alice and Bob compute (gab)−1 (mod p).

4. To send m, Alice sends c = mgab

5. To decrypt, Bob computes c(gab)−1 ≡ mgab(gab)−1 ≡ m

We omit discussion of Hardness assumption (HW)

RSA

Let n be a security parameter

1. Alice picks two primes p, q of length n and computes N = pq.

2. Alice computes φ(N) = φ(pq) = (p − 1)(q − 1). Denote by R

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

Alice finds d such that ed ≡ 1 (mod R).

4. Alice broadcasts (N, e). (Bob and Eve both see it.)

5. Bob: To send m ∈ {1, . . . ,N − 1}, send me (mod N).

6. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med (mod R) ≡ m1 (mod R) ≡ m

Hardness Assumption for RSA

Definition: Let f be f (N, e) = d , where N = pq, and

ed ≡ 1 (mod (p − 1)(q − 1))

Hardness assumption (HA): f is hard to compute.

Plain RSA Bytes!

The RSA given above is referred to as Plain RSA.
Insecure! m is always coded as me (mod N).

Make secure by padding: m ∈ {0, 1}L1 , r ∈ {0, 1}L2 .

To send m ∈ {0, 1}L1 , pick rand r ∈ {0, 1}L2 , send (rm)e .
(NOTE- rm means r CONCAT with m here and elsewhere.)
DEC: Alice finds rm and takes rightmost L1 bits.
Caveat: RSA still has issues when used in real world. They have
been fixed. Maybe.

Attacks on RSA

1. Factoring Algorithms. We saw some ideas with Jevon’s
Number. Response: Pick larger p, q

2. If Zelda give Ai (Ni , e):

2.1 Low-e attack: Response: High e. Duh.
2.2 me < N1 · · ·NL: Response: Pad m.

3. If Zelda give Ai (N, ei) and two of the ei ’s are rel prime, then
Euclidean Alg Attack: Response: Give everyone diff N’s. Duh.

4. Timing Attacks: Response: Pad the amount of time used.

Caveat: Theory says use different e’s. Practice says use
e = 216 + 1 for speed.

Rabin’s Encryption Scheme

n is a security parameter

1. Alice gen p, q primes of length n. Let N = pq. Send N.

2. Encode: To send m, Bob sends c = m2 (mod N).

3. Decode: Alice can find m such that m2 ≡ c (mod N).

OH!
There will be two or four of them! What to do? Later.

BIG PRO: Factoring Hard is hardness assumption.
CON: Alice has to figure out which of the sqrts is correct message.

Rabin’s Encryption Scheme

n is a security parameter

1. Alice gen p, q primes of length n. Let N = pq. Send N.

2. Encode: To send m, Bob sends c = m2 (mod N).

3. Decode: Alice can find m such that m2 ≡ c (mod N). OH!
There will be two or four of them! What to do? Later.

BIG PRO: Factoring Hard is hardness assumption.
CON: Alice has to figure out which of the sqrts is correct message.

Rabin’s Encryption Scheme

n is a security parameter

1. Alice gen p, q primes of length n. Let N = pq. Send N.

2. Encode: To send m, Bob sends c = m2 (mod N).

3. Decode: Alice can find m such that m2 ≡ c (mod N). OH!
There will be two or four of them! What to do? Later.

BIG PRO: Factoring Hard is hardness assumption.
CON: Alice has to figure out which of the sqrts is correct message.

A Theorem from Number Theory

Definition: A Blum Int is product of two primes ≡ 3 (mod 4).
Example: 21 = 3× 7.

Notation: SQN is the set of squares mod N. (Often called QRN .)
Example: If N = 21 then SQN = {1, 4, 7, 9, 15, 16, 18}.

Theorem: Assume N is a Blum Integer. Let m ∈ SQN . Then of
the two or four sqrts of m, only one is itself in SQN .
Proof: Omitted. Note: (1) not that hard, and (2) in Katz book.

We use Theorem to modify Rabin Encryption.

Rabin’s Encryption Scheme 2.0

Also called The Blum-Williams Variant of Rabin
n is a security parameter.

1. Alice gen p, q primes of length n such that p, q ≡ 3 (mod 4).
Let N = pq. Send N.

2. Encode: To send m, Bob sends c = m2 (mod N). Only send
m’s in SQN .

3. Decode: Alice can find 2 or 4 m such that m2 ≡ c (mod N).
Take the m ∈ SQN .

CON: Messages have to be in SQN .

History: Had timing been different Rabin Enc would be used.

Goldwasser-Micali Encryption

n is a security parameter. Will only send ONE bit. Bummer!

1. Alice gen p, q primes of length n, and z ∈ NSQN . Computes
N = pq. Send (N, z).

2. Encode: To send m ∈ {0, 1}, Bob picks random x ∈ ZN ,
sends c = zmx2 (mod N). Note that:

2.1 If m = 0 then zmx2 = x2 ∈ SQN .
2.2 If m = 1 then zmx2 = zx2 ∈ NSQN .

3. Decode: Alice determines if c ∈ SQ or not. If YES then
m = 0. If NO then m = 1.

BIG PRO: Hardness assumption natural: SQN hard.
BIG CON: Messages have to be 1-bit long.
TIME: For one bit you need 4 logN steps.

Blum-Goldwasser Enc. n Sec Param, L length of msg

1. Alice: p, q primes len n, p, q ≡ 3 (mod 4). N = pq. Send N.

2. Encode: Bob sends m ∈ {0, 1}L: picks random r ∈ ZN

x1 = r2 mod N b1 = LSB(x1).
x2 = x21 mod N b2 = LSB(x2).
...
xL = x2L−1 mod N bL = LSB(xL).
Send c = ((m1 ⊕ b1, . . . ,mL ⊕ bL), xL).

3. Decode: Alice: From xL Alice can compute xL−1, . . ., x1 by
sqrt (can do since Alice has p, q). Then can compute
b1, . . . , bL and hence m1, . . . ,mL.

BIG PRO: Hardness assumption is BBS psuedo-random.
TIME: For L bits need (L + 3) logN steps. Better than
Goldwasser-Micali.

LWE-KE

1. LWE-KE is a protocol for Key Exchange that does not rely on
Number Theory Hardness Assumption

2. There is also a LWE-RSA.

3. These might be useful if Factoring and Discrete Log can be
done by a quantum computer.

4. My presentation of it was not quite right.

5. The literature on these is not quite right either.

Secret Sharing

Threshold Secret Sharing

Zelda has a secret s ∈ {0, 1}n.

Def: Let 1 ≤ t ≤ m. (t, L)-secret sharing is a way for Zelda to give
strings to A1, . . . ,AL such that:

1. If any t get together than they can learn the secret.

2. If any t − 1 get together they cannot learn the secret.

Cannot learn the secret. Two flavors: (1) info-theoretic, (2)
computational.
Note: Access Structure is a set of sets of students closed under
superset. Can also look at Secret Sharing with other access
structures.

Methods For Secret Sharing

Assume |s| = n.

1. Random String Method.
PRO: Can be used for ANY access structure.
CON: For Threshold Zelda may have to give Alice LOTS of
strings

2. Poly Method. Uses: t points det poly of deg t − 1.
PRO: Zelda gives Alice a share of exactly n. Simple.
CON: Only used for threshold secret sharing
CAVEAT: For exactly n need weird math. Get n + 1 with
normal math.

3. Geometry. Uses: t points in Rt det. a (t − 1)-hyperplane.
PRO: Zelda gives Alice a share of exactly n. Simple.
CON: Only used for threshold secret sharing
CON: We didn’t cover it.

Short Shares

If demand Info-theoretic security then shares have to be ≥ |s|.

We did that in class.

So we go to comp theoretic, next slide.

Short Shares

Thm: Assume there exists an α-SES. Assume that for message of
length n, it is secure. Then, for all 1 ≤ t ≤ L there is a
(t, L)-scheme for |s| = n where each share is of size n

t + αn.

1. Zelda does k ← GEN(n). Note |k| = αn.

2. u = ENCk(s). Let u = u0 · · · ut−1, |ui | ∼ n
t .

3. Let p ∼ 2n/t . Zelda forms poly over Zp:

f (x) = ut−1x
t−1 + · · ·+ u1x + u0

4. Let q ∼ 2αn. Zelda forms poly over Zq by choosing
rt−1, . . . , r1 ∈ {0, . . . , q − 1} at random and then:

g(x) = rt−1x
t−1 + · · ·+ r1x + k

5. Zelda gives Ai , (f (i), g(i)). Length: ∼ n
t + αn.

Verifiable Secret Sharing VSS

Cannot do it if demand info-theoretic security.
That was a HW.
So we go to comp theoretic, next slide.

Verifiable Secret Sharing

1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1, f (x) = rt−1x
t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i).

5. Zelda gives to EVERYONE the values g r1 , . . . , g rt−1 , g s , g .
(We think discrete log is HARD so ri not revealed.)

Recover: The usual – any group of t can blah blah.
Verify: Ai reveals f (i) = 17. Group computes:
1) g17.
2) (g rt−1)i

t−1 × (g rt−2)i
t−2 × · · · (g r1)i

1 × (g s)i
0

= g f (i)

If this is g17 then Ai is truthful. If not then Ai is dirty stinking liar.

Provable Security and
Authentication

Provable Security: Passive

Definition of Secure Cryptosystem: Defined via a game. Eve needs
to determine which of m0,m1 was encrypted.

Secure Cryptosystem: Psuedo-one-time pad with psuedo random
generator.
Better Secure Cryptosystem: Psuedo-one-time pad with Stream
Cipher – an “infinite” psuedorandom sequence.

Stream Ciphers

1. Can obtain from easier assumptions theoretically. Not useful

2. Linear Feedback Shift Registers. Terrible Idea.

3. Trivium. Seems good so far.

4. Others that have been broken.

5. Others that have not been broken as far as we know.

Provable Security: CPA

Definition of CPA-Secure Cryptosystem: Defined via a game. Eve
needs to determine which of m0,m1 was encrypted. BUT Eve can
also encode her choice of texts. Encryption system needs to be
random- no NY,NY.

Secure CPA-Cryptosystem: Psuedorandom function used for key.
Diff key each letter.

1. Can obtain from easier assumptions theoretically. Not useful

2. Substitution-Permutation Networks (SPN)

3. Feistel Networks

Authentication

Message Authentication Codes: Tag each message with a private
signature to say YES, it came from me.

Need the function that generates tag to NOT be easy to predict.
Use Psuedorandom functions!

Only good for fixed length. For Variable length use Collision
Resistant Hash Functions.

Digital Signatures

Public version of Authentication.
Use RSA-like system but with Collision Resistant Hash Functions.

Good Luck on the Exam

Good Luck on the Exam!

