
Public Key Crypto: Math
Needed and DH

Private-Key Ciphers

What do the following Private Key Encryption Schemes all have in
common:

1. Shift Cipher

2. Affine Cipher

3. Vig Cipher

4. General Sub

5. Matrix Cipher

6. One-Time Pad

Alice and Bob need to meet! (Hence Private Key.)
Can Alice and Bob to establish a key without meeting?
Yes! And that is the key to public-key cryptography.
Aim: We present three such schemes: Diffie-Helman, ElGamal, and
RSA. (Diffie-Helman is not quite an encryption scheme.)

Private-Key Ciphers

What do the following Private Key Encryption Schemes all have in
common:

1. Shift Cipher

2. Affine Cipher

3. Vig Cipher

4. General Sub

5. Matrix Cipher

6. One-Time Pad

Alice and Bob need to meet! (Hence Private Key.)

Can Alice and Bob to establish a key without meeting?
Yes! And that is the key to public-key cryptography.
Aim: We present three such schemes: Diffie-Helman, ElGamal, and
RSA. (Diffie-Helman is not quite an encryption scheme.)

Private-Key Ciphers

What do the following Private Key Encryption Schemes all have in
common:

1. Shift Cipher

2. Affine Cipher

3. Vig Cipher

4. General Sub

5. Matrix Cipher

6. One-Time Pad

Alice and Bob need to meet! (Hence Private Key.)
Can Alice and Bob to establish a key without meeting?

Yes! And that is the key to public-key cryptography.
Aim: We present three such schemes: Diffie-Helman, ElGamal, and
RSA. (Diffie-Helman is not quite an encryption scheme.)

Private-Key Ciphers

What do the following Private Key Encryption Schemes all have in
common:

1. Shift Cipher

2. Affine Cipher

3. Vig Cipher

4. General Sub

5. Matrix Cipher

6. One-Time Pad

Alice and Bob need to meet! (Hence Private Key.)
Can Alice and Bob to establish a key without meeting?
Yes! And that is the key to public-key cryptography.

Aim: We present three such schemes: Diffie-Helman, ElGamal, and
RSA. (Diffie-Helman is not quite an encryption scheme.)

Private-Key Ciphers

What do the following Private Key Encryption Schemes all have in
common:

1. Shift Cipher

2. Affine Cipher

3. Vig Cipher

4. General Sub

5. Matrix Cipher

6. One-Time Pad

Alice and Bob need to meet! (Hence Private Key.)
Can Alice and Bob to establish a key without meeting?
Yes! And that is the key to public-key cryptography.
Aim: We present three such schemes: Diffie-Helman, ElGamal, and
RSA. (Diffie-Helman is not quite an encryption scheme.)

General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.

2. The computational task to crack is hard.

Caveats:

1. Hard to achieve information-theoretic hardness (1-time pad).

2. Hard to achieve comp-hardness. Few problems provably hard.

3. Can use hardness assumptions (e.g., factoring is hard)

What is Easy? What is Hard?
How hard is a problem based on the length of the input
Examples

1. SAT on a formula with n variables seems to require 2O(n)

steps. We do not know this.

2. Polynomial vs Exp time is our notion of easy vs hard.

3. Factoring n can be done in O(
√

n) time: Discuss. Easy!

NO!!: n is of length lg n + O(1) (henceforth just lg n).√
n = 2(0.5) lg n. Exponential. Slightly better algs known.

Upshot: For numeric problems length is lg n. We want (or don’t
want) algorithms polynomial in lg n.
What We Count: We will count arithmetic operations as taking 1
time step. This could be an issue with enormous numbers.

What is Easy? What is Hard?
How hard is a problem based on the length of the input
Examples

1. SAT on a formula with n variables seems to require 2O(n)

steps. We do not know this.

2. Polynomial vs Exp time is our notion of easy vs hard.

3. Factoring n can be done in O(
√

n) time: Discuss. Easy!
NO!!: n is of length lg n + O(1) (henceforth just lg n).√

n = 2(0.5) lg n. Exponential. Slightly better algs known.

Upshot: For numeric problems length is lg n. We want (or don’t
want) algorithms polynomial in lg n.
What We Count: We will count arithmetic operations as taking 1
time step. This could be an issue with enormous numbers.

Math Needed for Both
Diffie-Helman and RSA

Notation

Let p be a prime.

1. Zp is the numbers {0, . . . , p − 1} with modular addition and
multiplication.

2. Z∗
p is the numbers {1, . . . , p − 1} with modular multiplication.

Exponentiation mod p

Problem: Given a, n, p find an (mod p)
First Attempt

1. x0 = a

2. For i = 1 to n, xi = axi−1.

3. Let x = xn (mod p).

4. Output x .

Is this a good idea?

Its called First Attempt, so no.
Takes n steps and also x gets really large.
Can mod p every step so x not large. But still takes n steps.

Exponentiation mod p

Problem: Given a, n, p find an (mod p)
First Attempt

1. x0 = a

2. For i = 1 to n, xi = axi−1.

3. Let x = xn (mod p).

4. Output x .

Is this a good idea? Its called First Attempt, so no.

Takes n steps and also x gets really large.
Can mod p every step so x not large. But still takes n steps.

Exponentiation mod p

Problem: Given a, n, p find an (mod p)
First Attempt

1. x0 = a

2. For i = 1 to n, xi = axi−1.

3. Let x = xn (mod p).

4. Output x .

Is this a good idea? Its called First Attempt, so no.
Takes n steps and also x gets really large.

Can mod p every step so x not large. But still takes n steps.

Exponentiation mod p

Problem: Given a, n, p find an (mod p)
First Attempt

1. x0 = a

2. For i = 1 to n, xi = axi−1.

3. Let x = xn (mod p).

4. Output x .

Is this a good idea? Its called First Attempt, so no.
Takes n steps and also x gets really large.
Can mod p every step so x not large. But still takes n steps.

Exponentiation mod p

Example of a Good Algorithm
Want 364 (mod 101). All arithmetic is mod 101.
x0 = 3
x1 = x2

0 ≡ 9 This is 32.
x2 = x2

1 ≡ 92 ≡ 81. This is 34.
x3 = x2

2 ≡ 812 ≡ 97. This is 38.
x4 = x2

3 ≡ 972 ≡ 16. This is 316.
x5 = x2

4 ≡ 162 ≡ 54. This is 332.
x6 = x2

5 ≡ 542 ≡ 88. This is 364.
So in 6 steps we got the answer!

Discuss how many steps this take for an (p).Answer: lg n.
Discuss how we can generalize to when n is not a power of 2.

Exponentiation mod p

Example of a Good Algorithm
Want 364 (mod 101). All arithmetic is mod 101.
x0 = 3
x1 = x2

0 ≡ 9 This is 32.
x2 = x2

1 ≡ 92 ≡ 81. This is 34.
x3 = x2

2 ≡ 812 ≡ 97. This is 38.
x4 = x2

3 ≡ 972 ≡ 16. This is 316.
x5 = x2

4 ≡ 162 ≡ 54. This is 332.
x6 = x2

5 ≡ 542 ≡ 88. This is 364.
So in 6 steps we got the answer!
Discuss how many steps this take for an (p).

Answer: lg n.
Discuss how we can generalize to when n is not a power of 2.

Exponentiation mod p

Example of a Good Algorithm
Want 364 (mod 101). All arithmetic is mod 101.
x0 = 3
x1 = x2

0 ≡ 9 This is 32.
x2 = x2

1 ≡ 92 ≡ 81. This is 34.
x3 = x2

2 ≡ 812 ≡ 97. This is 38.
x4 = x2

3 ≡ 972 ≡ 16. This is 316.
x5 = x2

4 ≡ 162 ≡ 54. This is 332.
x6 = x2

5 ≡ 542 ≡ 88. This is 364.
So in 6 steps we got the answer!
Discuss how many steps this take for an (p).Answer: lg n.

Discuss how we can generalize to when n is not a power of 2.

Exponentiation mod p

Example of a Good Algorithm
Want 364 (mod 101). All arithmetic is mod 101.
x0 = 3
x1 = x2

0 ≡ 9 This is 32.
x2 = x2

1 ≡ 92 ≡ 81. This is 34.
x3 = x2

2 ≡ 812 ≡ 97. This is 38.
x4 = x2

3 ≡ 972 ≡ 16. This is 316.
x5 = x2

4 ≡ 162 ≡ 54. This is 332.
x6 = x2

5 ≡ 542 ≡ 88. This is 364.
So in 6 steps we got the answer!
Discuss how many steps this take for an (p).Answer: lg n.
Discuss how we can generalize to when n is not a power of 2.

Repeated Squaring Algorithm

All arithmetic is mod p.

1. Input (a, n, p)

2. Convert n to base 2: n = 2nL + · · ·+ 2n0 .

3. x0 = a

4. For i = 1 to nL, xi = x2
i−1.

5. (Now have a2
n0 , . . . , a2

nL) Answer is a2
n0 × · · · × a2

nL

Number of operations: O(log n).

Diffie-Helman Key
Exchange

Generators mod p

Lets take powers of 3 mod 7. All arithmetic is mod 7.
30 ≡ 1
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{30, 31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order

3 is a generator for Z7.
Definition: If p is a prime and {g0, g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Zp.

Generators mod p

Lets take powers of 3 mod 7. All arithmetic is mod 7.
30 ≡ 1
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{30, 31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order

3 is a generator for Z7.

Definition: If p is a prime and {g0, g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Zp.

Generators mod p

Lets take powers of 3 mod 7. All arithmetic is mod 7.
30 ≡ 1
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{30, 31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order

3 is a generator for Z7.
Definition: If p is a prime and {g0, g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Zp.

Discrete Log-Example

Fact: 5 is a generator mod 73. All arithmetic is mod 73.
Discuss the following with your neighbor:

1. Find x such that 5x ≡ 25

2. Find x such that 5x ≡ 26

1. Find x such that 5x ≡ 25. x = 2 obv works.

2. Find x such that 5x ≡ 26. Do not know. Could try computing
53, 54, . . . , until you get 26. Might take ∼ 70 steps.

The second problem seems hard.

Discrete Log-Example

Fact: 5 is a generator mod 73. All arithmetic is mod 73.
Discuss the following with your neighbor:

1. Find x such that 5x ≡ 25

2. Find x such that 5x ≡ 26

1. Find x such that 5x ≡ 25. x = 2 obv works.

2. Find x such that 5x ≡ 26. Do not know. Could try computing
53, 54, . . . , until you get 26. Might take ∼ 70 steps.

The second problem seems hard.

Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem is:
given y , find x such that g x = y .

Discuss: Is this problem computationally hard?

1. If g , y are small so that then could be easy.
Example: 7x ≡ 49 (mod 1009) is easy.

2. If g small, y large, then the problem is sometimes easy (HW).

3. If g , y ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

4. Obv alg: O(p) steps. There is an O(
√

p) alg. Still too slow.

Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem is:
given y , find x such that g x = y .

Discuss: Is this problem computationally hard?

1. If g , y are small so that then could be easy.
Example: 7x ≡ 49 (mod 1009) is easy.

2. If g small, y large, then the problem is sometimes easy (HW).

3. If g , y ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

4. Obv alg: O(p) steps. There is an O(
√

p) alg. Still too slow.

Consider What We Already Have Here

I Exponentiation is Easy.

I Discrete Log is thought to be Hard.

Can we come up with a crypto system where Alice and Bob do
Exponentiation to encrypt and decrypt, while Eve has to do
Discrete Log to crack it?

No. But we’ll come close.

Consider What We Already Have Here

I Exponentiation is Easy.

I Discrete Log is thought to be Hard.

Can we come up with a crypto system where Alice and Bob do
Exponentiation to encrypt and decrypt, while Eve has to do
Discrete Log to crack it?

No. But we’ll come close.

Consider What We Already Have Here

I Exponentiation is Easy.

I Discrete Log is thought to be Hard.

Can we come up with a crypto system where Alice and Bob do
Exponentiation to encrypt and decrypt, while Eve has to do
Discrete Log to crack it?

No. But we’ll come close.

Finding Generators

First Attempt at, given p, find a gen for Zp

1. Input p

2. For g = 2 to p − 1

Compute g1, g2, . . . , gp−1 until either hit a repeat or
finish. If repeats then g is NOT a generator, so goto
the next g. If finishes then output g and stop.

PRO: ∼ p/2 g ’s are gens so O(1) iterations.
CON: Computing g1, . . . , gp−1 is O(p log p) operations.

Finding Generators

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x = 1.

Second Attempt at, given p, find a gen for Zp

1. Input p

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = 2 to p − 1

Compute g x for all x ∈ F . If any = 1 then g not
generator. If none are 1 then output g and stop.

Is this a good algorithm?

PRO: As noted before, O(1) iterations.
PRO: Every iter – O(|F |(log p)) ops. |F | ≤ log p so okay.
BIG CON: Factoring p − 1? Really? Darn!

Finding Generators

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x = 1.

Second Attempt at, given p, find a gen for Zp

1. Input p

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = 2 to p − 1

Compute g x for all x ∈ F . If any = 1 then g not
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted before, O(1) iterations.
PRO: Every iter – O(|F |(log p)) ops. |F | ≤ log p so okay.

BIG CON: Factoring p − 1? Really? Darn!

Finding Generators

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x = 1.

Second Attempt at, given p, find a gen for Zp

1. Input p

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = 2 to p − 1

Compute g x for all x ∈ F . If any = 1 then g not
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted before, O(1) iterations.
PRO: Every iter – O(|F |(log p)) ops. |F | ≤ log p so okay.
BIG CON: Factoring p − 1? Really? Darn!

Finding Generators

Idea:Pick p such that p − 1 = 2q where q is prime.
Third Attempt at, given p, find a gen for Zp

1. Input p a prime such that p − 1 = 2q where q is prime.

2. Factor p − 1. Let F be the set of its factors except p − 1.
Thats EASY: F = {2, q}.

3. For g = 2 to p − 1

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?

PRO: As noted above O(1) iterations.
PRO: Every iteration does O(|F |(log p)) = O(log p) operations.
CON: None. But need both p and p−1

2 are primes.

Finding Generators

Idea:Pick p such that p − 1 = 2q where q is prime.
Third Attempt at, given p, find a gen for Zp

1. Input p a prime such that p − 1 = 2q where q is prime.

2. Factor p − 1. Let F be the set of its factors except p − 1.
Thats EASY: F = {2, q}.

3. For g = 2 to p − 1

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted above O(1) iterations.
PRO: Every iteration does O(|F |(log p)) = O(log p) operations.

CON: None. But need both p and p−1
2 are primes.

Finding Generators

Idea:Pick p such that p − 1 = 2q where q is prime.
Third Attempt at, given p, find a gen for Zp

1. Input p a prime such that p − 1 = 2q where q is prime.

2. Factor p − 1. Let F be the set of its factors except p − 1.
Thats EASY: F = {2, q}.

3. For g = 2 to p − 1

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO: As noted above O(1) iterations.
PRO: Every iteration does O(|F |(log p)) = O(log p) operations.
CON: None. But need both p and p−1

2 are primes.

Primality Testing

Warning: The next few slides will culminate in a test for primality
that may FAIL. It is NOT used. But ideas are used in real
algorithm.

Lemma
p prime, 2 ≤ i ≤ p − 1, then p!

i!(p−i)! ∈ N and is divisible by p.

Proof.
The expression is the answer to a question that has a N solution:

How many ways can you choose i items out of p?
Since p!

i!(p−i)! ∈ N, p divides the numerator, p does not divide the
denominator, p divides the number.

Note:
(p
i

)
= p!

(p−i)!i! .

Primality Testing

Warning: The next few slides will culminate in a test for primality
that may FAIL. It is NOT used. But ideas are used in real
algorithm.

Lemma
p prime, 2 ≤ i ≤ p − 1, then p!

i!(p−i)! ∈ N and is divisible by p.

Proof.
The expression is the answer to a question that has a N solution:

How many ways can you choose i items out of p?
Since p!

i!(p−i)! ∈ N, p divides the numerator, p does not divide the
denominator, p divides the number.

Note:
(p
i

)
= p!

(p−i)!i! .

Primality Testing

Lemma
For any n ∈ N, (x + y)n =

∑n
i=0

(n
i

)
x iyn−i

Lemma
p prime, a ∈ N, ap ≡ a (mod p).

Proof.
Fix prime p. By induction on a. Base Case: 1p ≡ 1.
Ind Hyp: ap ≡ a (mod p)
Ind Step:

(a + 1)p =
n∑

i=0

(
p

i

)
ai1p−i =

p∑
i=0

(
p

i

)
ai ≡ ap + a0 ≡ a + 1

Primality Testing

Prior Slides: If p is prime and a ∈ N then ap ≡ a (mod p).
What has been observed: If p is NOT prime then USUALLY for
MOST a, ap 6≡ a (mod p).
Primality Algorithm:

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form random set R of a ∈ {2, . . . , p − 1} of size 2 dlg pe
(Could take c dlg pe for any c . Use O(lg p) so that this step is
efficient.)

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p NOT PRIME (We are SURE.)
3.2 If for all a, ap ≡ a then PRIME (We are NOT SURE.)

Two reasons for our uncertainty

I If p is composite but we were unluckily with R.

I There are some composite p such that for all a, ap ≡ a.

Primality Testing – What is Really True

1. Exists algorithm that only has first problem, possible bad luck.

2. That algorithm has prob of failure ≤ 1
2p . Good enough!

3. Exists deterministic poly time algorithm but is much slower.

4. n is a Carmichael Numbers if, for all a, an ≡ a. These are the
numbers my algorithm FAILS on.

5. The first seven Carmichael Numbers:
561, 1105, 1729, 2465, 2821, 6601, 8911

6. Carmichael numbers are rare.

Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given n, generate a prime of length n.

1. Input(n)

2. Pick y ∈ {0, 1}n−1 at random.

3. x = 1y (so x is a true n-bit number)

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?

PRO: NT tells us returns a prime within 3n2 tries with high prob.
CON: None! Algorithm is fine! Can speed it up a bit (HW).

Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given n, generate a prime of length n.

1. Input(n)

2. Pick y ∈ {0, 1}n−1 at random.

3. x = 1y (so x is a true n-bit number)

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: NT tells us returns a prime within 3n2 tries with high prob.

CON: None! Algorithm is fine! Can speed it up a bit (HW).

Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given n, generate a prime of length n.

1. Input(n)

2. Pick y ∈ {0, 1}n−1 at random.

3. x = 1y (so x is a true n-bit number)

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: NT tells us returns a prime within 3n2 tries with high prob.
CON: None! Algorithm is fine! Can speed it up a bit (HW).

Generating Safe Primes

Definition
p is a safe prime if p is prime and p−1

2 is prime.

First Attempt at, given n, generate a safe prime of length n

1. Input(n)

2. Pick y ∈ {0, 1}n−21 at random.

3. x = 1y (note that x is odd).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?

PRO: NT tells us returns prime quickly with high prob.
CON: None. Algorithm is fine! Can speed it up a bit (HW).

Generating Safe Primes

Definition
p is a safe prime if p is prime and p−1

2 is prime.

First Attempt at, given n, generate a safe prime of length n

1. Input(n)

2. Pick y ∈ {0, 1}n−21 at random.

3. x = 1y (note that x is odd).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: NT tells us returns prime quickly with high prob.

CON: None. Algorithm is fine! Can speed it up a bit (HW).

Generating Safe Primes

Definition
p is a safe prime if p is prime and p−1

2 is prime.

First Attempt at, given n, generate a safe prime of length n

1. Input(n)

2. Pick y ∈ {0, 1}n−21 at random.

3. x = 1y (note that x is odd).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: NT tells us returns prime quickly with high prob.
CON: None. Algorithm is fine! Can speed it up a bit (HW).

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks random a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga and

sends it to Bob in the clear (Eve can see it).

4. Bob picks random b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb and

sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab.

6. Bob computes (ga)b = gab.

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks random a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga and

sends it to Bob in the clear (Eve can see it).

4. Bob picks random b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb and

sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab.

6. Bob computes (ga)b = gab.

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.

Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks random a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga and

sends it to Bob in the clear (Eve can see it).

4. Bob picks random b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb and

sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab.

6. Bob computes (ga)b = gab.

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!

Question: Can Eve find out s?

The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks random a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga and

sends it to Bob in the clear (Eve can see it).

4. Bob picks random b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb and

sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab.

6. Bob computes (ga)b = gab.

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?

