
Public Key Crypto: Math
Needed and DH



Private-Key Ciphers

What do the following Private Key Encryption Schemes all have in
common:

1. Shift Cipher

2. Affine Cipher

3. Vig Cipher

4. General Sub

5. Matrix Cipher

6. One-Time Pad

Alice and Bob need to meet! (Hence Private Key.)
Can Alice and Bob to establish a key without meeting?
Yes! And that is the key to public-key cryptography.
Aim: We present three such schemes: Diffie-Helman, ElGamal, and
RSA. (Diffie-Helman is not quite an encryption scheme.)
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General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.

2. The computational task to crack is hard.

Caveats:

1. Hard to achieve information-theoretic hardness (1-time pad).

2. Hard to achieve comp-hardness. Few problems provably hard.

3. Can use hardness assumptions (e.g., factoring is hard)



What is Easy? What is Hard?
How hard is a problem based on the length of the input
Examples

1. SAT on a formula with n variables seems to require 2O(n)

steps. We do not know this.

2. Polynomial vs Exp time is our notion of easy vs hard.

3. Factoring n can be done in O(
√

n) time: Discuss. Easy!

NO!!: n is of length lg n + O(1) (henceforth just lg n).√
n = 2(0.5) lg n. Exponential. Slightly better algs known.

Upshot: For numeric problems length is lg n. We want (or don’t
want) algorithms polynomial in lg n.
What We Count: We will count arithmetic operations as taking 1
time step. This could be an issue with enormous numbers.
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Math Needed for Both
Diffie-Helman and RSA



Notation

Let p be a prime.

1. Zp is the numbers {0, . . . , p − 1} with modular addition and
multiplication.

2. Z∗
p is the numbers {1, . . . , p − 1} with modular multiplication.



Exponentiation mod p

Problem: Given a, n, p find an (mod p)
First Attempt

1. x0 = a

2. For i = 1 to n, xi = axi−1.

3. Let x = xn (mod p).

4. Output x .

Is this a good idea?

Its called First Attempt, so no.
Takes n steps and also x gets really large.
Can mod p every step so x not large. But still takes n steps.
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Exponentiation mod p

Example of a Good Algorithm
Want 364 (mod 101). All arithmetic is mod 101.
x0 = 3
x1 = x2

0 ≡ 9 This is 32.
x2 = x2

1 ≡ 92 ≡ 81. This is 34.
x3 = x2

2 ≡ 812 ≡ 97. This is 38.
x4 = x2

3 ≡ 972 ≡ 16. This is 316.
x5 = x2

4 ≡ 162 ≡ 54. This is 332.
x6 = x2

5 ≡ 542 ≡ 88. This is 364.
So in 6 steps we got the answer!

Discuss how many steps this take for an (p).Answer: lg n.
Discuss how we can generalize to when n is not a power of 2.
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Repeated Squaring Algorithm

All arithmetic is mod p.

1. Input (a, n, p)

2. Convert n to base 2: n = 2nL + · · ·+ 2n0 .

3. x0 = a

4. For i = 1 to nL, xi = x2
i−1.

5. (Now have a2
n0 , . . . , a2

nL ) Answer is a2
n0 × · · · × a2

nL

Number of operations: O(log n).



Diffie-Helman Key
Exchange



Generators mod p

Lets take powers of 3 mod 7. All arithmetic is mod 7.
30 ≡ 1
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{30, 31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order

3 is a generator for Z7.
Definition: If p is a prime and {g0, g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Zp.
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Discrete Log-Example

Fact: 5 is a generator mod 73. All arithmetic is mod 73.
Discuss the following with your neighbor:

1. Find x such that 5x ≡ 25

2. Find x such that 5x ≡ 26

1. Find x such that 5x ≡ 25. x = 2 obv works.

2. Find x such that 5x ≡ 26. Do not know. Could try computing
53, 54, . . . , until you get 26. Might take ∼ 70 steps.

The second problem seems hard.
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Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem is:
given y , find x such that g x = y .

Discuss: Is this problem computationally hard?

1. If g , y are small so that then could be easy.
Example: 7x ≡ 49 (mod 1009) is easy.

2. If g small, y large, then the problem is sometimes easy (HW).

3. If g , y ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

4. Obv alg: O(p) steps. There is an O(
√

p) alg. Still too slow.
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Consider What We Already Have Here

I Exponentiation is Easy.

I Discrete Log is thought to be Hard.

Can we come up with a crypto system where Alice and Bob do
Exponentiation to encrypt and decrypt, while Eve has to do
Discrete Log to crack it?

No. But we’ll come close.
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Finding Generators

First Attempt at, given p, find a gen for Zp

1. Input p

2. For g = 2 to p − 1

Compute g1, g2, . . . , gp−1 until either hit a repeat or
finish. If repeats then g is NOT a generator, so goto
the next g. If finishes then output g and stop.

PRO: ∼ p/2 g ’s are gens so O(1) iterations.
CON: Computing g1, . . . , gp−1 is O(p log p) operations.



Finding Generators

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x = 1.

Second Attempt at, given p, find a gen for Zp

1. Input p

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = 2 to p − 1

Compute g x for all x ∈ F . If any = 1 then g not
generator. If none are 1 then output g and stop.

Is this a good algorithm?

PRO: As noted before, O(1) iterations.
PRO: Every iter – O(|F |(log p)) ops. |F | ≤ log p so okay.
BIG CON: Factoring p − 1? Really? Darn!
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Finding Generators

Idea:Pick p such that p − 1 = 2q where q is prime.
Third Attempt at, given p, find a gen for Zp

1. Input p a prime such that p − 1 = 2q where q is prime.

2. Factor p − 1. Let F be the set of its factors except p − 1.
Thats EASY: F = {2, q}.

3. For g = 2 to p − 1

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?

PRO: As noted above O(1) iterations.
PRO: Every iteration does O(|F |(log p)) = O(log p) operations.
CON: None. But need both p and p−1

2 are primes.
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Primality Testing

Warning: The next few slides will culminate in a test for primality
that may FAIL. It is NOT used. But ideas are used in real
algorithm.

Lemma
p prime, 2 ≤ i ≤ p − 1, then p!

i!(p−i)! ∈ N and is divisible by p.

Proof.
The expression is the answer to a question that has a N solution:

How many ways can you choose i items out of p?
Since p!

i!(p−i)! ∈ N, p divides the numerator, p does not divide the
denominator, p divides the number.

Note:
(p
i

)
= p!

(p−i)!i! .
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Primality Testing

Lemma
For any n ∈ N, (x + y)n =

∑n
i=0

(n
i

)
x iyn−i

Lemma
p prime, a ∈ N, ap ≡ a (mod p).

Proof.
Fix prime p. By induction on a. Base Case: 1p ≡ 1.
Ind Hyp: ap ≡ a (mod p)
Ind Step:

(a + 1)p =
n∑

i=0

(
p

i

)
ai1p−i =

p∑
i=0

(
p

i

)
ai ≡ ap + a0 ≡ a + 1



Primality Testing

Prior Slides: If p is prime and a ∈ N then ap ≡ a (mod p).
What has been observed: If p is NOT prime then USUALLY for
MOST a, ap 6≡ a (mod p).
Primality Algorithm:

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form random set R of a ∈ {2, . . . , p − 1} of size 2 dlg pe
(Could take c dlg pe for any c . Use O(lg p) so that this step is
efficient.)

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p NOT PRIME (We are SURE.)
3.2 If for all a, ap ≡ a then PRIME (We are NOT SURE.)

Two reasons for our uncertainty

I If p is composite but we were unluckily with R.

I There are some composite p such that for all a, ap ≡ a.



Primality Testing – What is Really True

1. Exists algorithm that only has first problem, possible bad luck.

2. That algorithm has prob of failure ≤ 1
2p . Good enough!

3. Exists deterministic poly time algorithm but is much slower.

4. n is a Carmichael Numbers if, for all a, an ≡ a. These are the
numbers my algorithm FAILS on.

5. The first seven Carmichael Numbers:
561, 1105, 1729, 2465, 2821, 6601, 8911

6. Carmichael numbers are rare.



Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given n, generate a prime of length n.

1. Input(n)

2. Pick y ∈ {0, 1}n−1 at random.

3. x = 1y (so x is a true n-bit number)

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?

PRO: NT tells us returns a prime within 3n2 tries with high prob.
CON: None! Algorithm is fine! Can speed it up a bit (HW).



Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given n, generate a prime of length n.

1. Input(n)

2. Pick y ∈ {0, 1}n−1 at random.

3. x = 1y (so x is a true n-bit number)

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: NT tells us returns a prime within 3n2 tries with high prob.

CON: None! Algorithm is fine! Can speed it up a bit (HW).



Generating Primes (also needed for RSA)

Take as given: Primality Testing is FAST.

First Attempt at, given n, generate a prime of length n.

1. Input(n)

2. Pick y ∈ {0, 1}n−1 at random.

3. x = 1y (so x is a true n-bit number)

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO: NT tells us returns a prime within 3n2 tries with high prob.
CON: None! Algorithm is fine! Can speed it up a bit (HW).



Generating Safe Primes

Definition
p is a safe prime if p is prime and p−1

2 is prime.

First Attempt at, given n, generate a safe prime of length n

1. Input(n)

2. Pick y ∈ {0, 1}n−21 at random.

3. x = 1y (note that x is odd).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?

PRO: NT tells us returns prime quickly with high prob.
CON: None. Algorithm is fine! Can speed it up a bit (HW).
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The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks random a ∈ {p3 , . . . ,
2p
3 }. Alice computes ga and

sends it to Bob in the clear (Eve can see it).

4. Bob picks random b ∈ {p3 , . . . ,
2p
3 }. Bob computes gb and

sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab.

6. Bob computes (ga)b = gab.

7. gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?
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