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Needed Math: Chinese Remainder Theorem Example

Find x such that:

x ≡ 17 (mod 31)
x ≡ 20 (mod 37)

a) The inverse of 31 mod 37 is 6
b) The inverse of 37 mod 31 is the inverse of 6 mod 31 which is 26.
c) 20× 6× 31 + 17× 26× 37 = 20, 074

20× (31)−1 × 31 + 17× (37)−1 × 37

Mod 31: First term is 0. Second term is 17. So 17.
Mod 37: First term is 20. Second term is 0. So 20.
So x = 20, 074 is answer.



Needed Math: Chinese Remainder Theorem Example

Find x such that:

x ≡ 17 (mod 31) & x ≡ 20 (mod 37)

So x = 20, 074 is answer. Can we find a smaller x?
We only care about x (mod 31) and x (mod 37).
Note:

x ≡ 17 (mod 31) =⇒ x − 31× 37 ≡ 17 (mod 31)
x ≡ 20 (mod 37) =⇒ x − 31× 37 ≡ 20 (mod 37)

If x works then x − 31× 37 works. Iterate until get between 0 and
31× 37. Whats this called? Discuss

x (mod 31× 37)

Upshot: Can take x = 20, 074 (mod 31× 37) = 629
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Needed Math: Chinese Remainder Theorem L = 2 Case

1. Input a, b,N1,N2, N1,N2, rel primes. Want 0 ≤ x ≤ N1N2:

x ≡ a (mod N1)
x ≡ b (mod N2)

2. Find the inverse of N1 mod N2 and denote this N−11 .

3. Find the inverse of N2 mod N1 and denote this N−12 .

4. y = bN−11 N1 + aN−12 N2

Mod N1: 1st term is 0, 2nd term is a. So y ≡ a (mod N1).

Mod N2: 2nd term is 0, 1st term is b. So y ≡ b (mod N2).

5. x ≡ y (mod N1N2). (Convention that 0 ≤ x ≤ N1N2 − 1)



Needed Math: The Chinese Remainder Theorem

Theorem: If N1, . . . ,NL are rel prime, x1, . . . , xL are anything, then
there exists x with 0 ≤ x ≤ N1 · · ·NL such that
x ≡ x1 (mod N1)
x ≡ x2 (mod N2)
...
x ≡ xL (mod NL)

Proof: On HW.

Notation: CRT is Chinese Remainder Theorem.



Needed Math: The e Theorem, L = 2 case

Theorem: Assume N1,N2 are rel prime, e,m ∈ N. Let
0 ≤ x < N1N2 be the number from CRT such that
x ≡ me (mod N1)
x ≡ me (mod N2)
Then x ≡ me (mod N1N2). IF me < N1N2 then x = me .

Proof: There exists k1, k2 such that
x = me + k1N1 k1 ∈ Z, Could be negative)
x = me + k2N2 k2 ∈ Z, Could be negative)

Subtract to get k1N1 = k2N2. Since N1,N2 rel prime, N1 divides
k2, so k2 = kN1.
x = me + kN1N2. Hence x ≡ me (mod N1N2).
If 0 ≤ me < N1N2 then since 0 ≤ x ≤ N1N2 & x ≡ me , x = me .



Needed Math: The e Theorem, L = 2, Example

N = 31× 37 = 1147. m = 6, e = 4. Note that 64 = 1296 > 1147.
x ≡ 64 (mod 31)
x ≡ 64 (mod 37)
x = 149. So 149 ≡ 64 (mod 1147) but

149 = 64 − 1147, so

149 is NOT a power of 4.

N = 31× 37 = 1147. m = 5, e = 4. Note that 54 = 625 < 1147.
x ≡ 54 (mod 31)
x ≡ 54 (mod 37)
x = 625. So 625 ≡ 54 (mod 1147) but
625 < 1147, so x = 625 IS a power of 4.
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Needed Math: The e Theorem, General L

Theorem: Assume N1, . . . ,NL are rel prime, e,m ∈ N. Assume
there is an x (NOT necc ≤ N1 · · ·NL) such that

x ≡ me (mod N1)
...

...
x ≡ me (mod NL)

Then x ≡ me (mod N1 · · ·NL). If me < N1 · · ·NL then x = me .
Proof: Might be on a future HW, or Midterm, or Final, or any
combination of the three. Or might not.



Low Exponent Attack: Example

1) Na = 377, Nb = 391, Nc = 589. For Alice, Bob, Carol.
2) e = 3.
3) Zelda sends m to all three. Eve will find m. Note m < 377.

1. Zelda sends Alice 330. So m3 ≡ 330 (mod 377).

2. Zelda sends Bob 34. So m3 ≡ 34 (mod 391).

3. Zelda sends Carol 419. So m3 ≡ 419 (mod 589).

Eve sees all of this. Eve uses CRT to find 0 ≤ x < 377×391×589.
x ≡ 330 ≡ m3 (mod 377)
x ≡ 34 ≡ m3 (mod 391)
x ≡ 419 ≡ m3 (mod 589)
Eve finds such a number: x = 1, 061, 208.
By e-Theorem

1, 061, 208 ≡ m3 (mod 377× 391× 589).



Low Exponent Attack: Example Continued

By e-Theorem

1, 061, 208 ≡ m3 (mod 377× 391× 589).

Most Important Fact: Recall that m ≤ 377. Hence note that:

m3 < 377× 377× 377 < 377× 391× 589
m3 ≡ 1, 061, 208 (mod 377× 391× 589)

Therefore the m3 calcuation cannot have wrap-around. Hence m
can be gotten from the ordinary cube root operation. We find

(1, 061, 208)1/3 = 102

So m = 102,
Note: Cracked RSA without factoring.



Where did e = 3 Come Into This?

Since m < 377 we had:

m3 < 377× 377× 377 < 377× 391× 589

What is e = 4 was used? Then everything goes through until we
get to:

m4 < 377× 377× 377× 377

We need this to be < 377× 391× 589.
But its not. So we needed

e ≤ The number of people



Low Exponent Attack: Generalized

1) L people. Use N1 < · · · < NL. All Rel Prime.
2) e ≤ L
3) Zelda sends m to L people. Note m < N1.

4) You will finish this on HW. You will write psuedocode.

Can you run the algorithm even if e is not small? Discuss
Yes- and if m is small enough it may even work. But it needs to
report FAILURE if get x > N1 · · ·NL.
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RSA

Let n be a security parameter

1. Alice picks two primes p, q of length n and computes N = pq.

2. Alice computes φ(N) = φ(pq) = (p − 1)(q − 1). Denote by R

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

Alice finds d such that ed ≡ 1 (mod R).

4. Alice broadcasts (N, e). (Bob and Eve both see it.)

5. Bob: To send m ∈ {1, . . . ,N − 1}, send me (mod N).

6. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med (mod R) ≡ m1 (mod R) ≡ m



Is RSA Hard to Crack?

Hardness Assumption for RSA: The following problem is hard:
Given (N, e, c) where N = pq and c ≡ me (mod N) for some m,
Find m.

Objection: Hardness assumption not natural.
Objection: Hardness assumption does not have a long history of
being tested.
We Want: An Encryption scheme based on Factoring being hard.

Is there one? Vote: Yes, No, or Unk?

Yes. Rabin Encryption.
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Rabin Encryption



Math for Rabin Encryption – Square Roots Mod 7

1. Solve m2 ≡ 1 (mod 7)

m = 1, 6

2. Solve m2 ≡ 2 (mod 7) m = 3, 4

3. Solve m2 ≡ 3 (mod 7) NONE

4. Solve m2 ≡ 4 (mod 7) m = 2, 5

5. Solve m2 ≡ 5 (mod 7) NONE

6. Solve m2 ≡ 6 (mod 7) NONE

Since a2 = (−a)2 will always have, for all prime p,
p−1
2 elements of {1, . . . , p} have sqrts mod p.

p−1
2 elements of {1, . . . , p} do not have sqrts mod p.

Note: Computing Square Roots Mod n will mean determining if
they exists and if so return all of them.
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Math for Rabin Encryption – Square Roots Mod p

Theorem: c has a sqrt mod p iff c(p−1)/2 − 1 ≡ 0.

c = m2 =⇒ c(p−1)/2 ≡ (m2)(p−1)/2 ≡ mp−1 ≡ 1.

The equation x (p−1)/2 − 1 ≡ 0 has (p − 1)/2 roots.
There are (p − 1)/2 numbers that have sqrts. Hence
If c does not have a sqrt root then c(p−1)/2 − 1 6≡ 0.

Theorem: If p ≡ 3 (mod 4) then easy to compute sqrt mod p.
Given c if c(p−1)/2 6≡ 1 NO. If ≡ 1 then:

(c(p+1)/4)2 ≡ c(p+1)/2 ≡ c(c(p−1)/2) ≡ c × 1 ≡ c .

So output c(p+1)/4 and other sqrt is p − c(p+1)/4.
Note: If p ≡ 1 (mod 4) also easy to do sqrt.
Upshot: Sqrt mod a prime is easy!



Math for Rabin Encryption – Procedures

We refashion the previous slide to make it into an algorithm
How to find square roots mod p if p ≡ 3 (mod 4).
All arithmetic is mod p.

Input(c)

Compute c(p−1)/2. If it is NOT 1 then output There is no
square root!. If it is 1 then goto next step

Compute a = c(p+1)/4.

Output a and p − a. These are the two square roots.

Note: There is a similar algorithm for p ≡ 1 (mod 4) but it is
slightly more complicated.



Theorem: c has a sqrt mod p iff c(p−1)/2 − 1 ≡ 0.



Math for Rabin Encryption – Square Roots Mod n

What about sqrt mod a composite. Try these:

1. Solve m2 ≡ 9 (mod 1147)

2. Solve m2 ≡ 101 (mod 1147)

1. Solve m2 ≡ 9 (mod 1147): Answers: 3, 34, 1113, 1144.

2. Solve m2 ≡ 101 (mod 1147): Answers: Hmmm.

Solve m2 ≡ 9 (mod 1147): 3, 1147− 3 = 1144 easy. If had 34
then 1147− 34 = 1144 easy. But how to get 34?

Vote: Is finding sqrts mod N hard? Yes, No, Unk?
Unk: Many computational questions in Number Theory are Unk.
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m2 ≡ 101 (mod 1147) 1147 = 31× 37

m2 ≡ 101 (mod 31). m2 ≡ 8 (mod 31): m ≡ ±15 (mod 31)
m2 ≡ 101 (mod 37). m2 ≡ 27 (mod 37) m ≡ ±8 (mod 37).
One approach: Want number m ∈ {1, . . . , 1146} such that
m ≡ 15 (mod 31)
m ≡ 8 (mod 37)
Use CRT to get:

m = 15918 ≡ 1007 (mod 1147)



Math for Rabin Encryption – Square Roots Mod n

By using ±15 (mod 31) and ±8 (mod 37) can find 4 sqrts.

Upshot: sqrts mod N easy if know the factors of n.
Upshot: Always get 0 or 2 or 4 sqrts if mod N = pq.

What about finding sqrts mod N where factors of N are not
known?

Normally I would say
The problem of finding sqrt mod N where the factors of N are not
known is believed to be hard.
This time I can say something stronger.
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Math for Rabin Encryption – Square Roots Mod n
How hard is sqrts mod N when factors of N not known?

Theorem: If finding sqrts mod N is easy then factoring is easy.

1. Given N = pq (p, q unknown) want to factor it.

2. Pick a random c and find its sqrts.

3. If it doesn’t have ≥ 4 sqrts then goto step 2.

4. The four sqrts are of the form ±x and ±y . Now use x , y . We
know that

x2 ≡ y2 (mod N).

x2 − y2 ≡ 0 (mod N)

(x − y)(x + y) ≡ 0 (mod N)

GCD(x − y ,N) or GCD(x + y ,N) likely factor.
Discuss: Why did I use x , y instead of x ,−x?
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All you Need to Know for Rabin’s Scheme

1. Finding primes is easy.

2. Squaring is easy.

3. If N is factored then sqrt mod N is easy.

4. If N is not factored then sqrt mod N is thought to be hard
(equiv fo factoring).



Rabin’s Encryption Scheme

n is a security parameter

1. Alice gen p, q primes of length n. Let N = pq. Send N.

2. Encode: To send m, Bob sends c = m2 (mod N).

3. Decode: Alice can find m such that m2 ≡ c (mod N).

OH!
There will be two or four of them! What to do? Later.

PRO: Easy for Alice and Bob
BIG PRO: Factoring Hard is hardness assumption.
CON: Alice has to figure out which of the sqrts is correct message.
Caveat: If m is English text then Alice can tell which one it is.
Caveat: If not. Hmmm.
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How to Modify Rabin’s Encryption?

Lets looks at mod 21 = 3× 7.
12, 82, 132, 202 ≡ 1
22, 52, 162, 192 ≡ 4
32, 182 ≡ 9
42, 102, 112, 172 ≡ 16
62, 152 ≡ 15
72, 142 ≡ 7
92, 122 ≡ 18
Question: What do the red numbers have in common? Discuss

They all have square roots! They are all also on the RHS.
What is it about 21 that makes this work?
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A Theorem from Number Theory

Definition: A Blum Int is product of two primes ≡ 3 (mod 4).
Example: 21 = 3× 7.

Notation: SQN is the set of squares mod N. (Often called QRN .)
Example: If N = 21 then SQN = {1, 4, 7, 9, 15, 16, 18}.

Theorem: Assume N is a Blum Integer. Let m ∈ SQN . Then of
the two or four sqrts of m, only one is itself in SQN .
Proof: Omitted. Note: (1) not that hard, and (2) in Katz book.

We use Theorem to modify Rabin Encryption.



Rabin’s Encryption Scheme 2.0

(This modification by Blum and Williams.) n is a security
parameter.

1. Alice gen p, q primes of length n such that p, q ≡ 3 (mod 4).
Let N = pq. Send N.

2. Encode: To send m, Bob sends c = m2 (mod N). Only send
m’s in SQN .

3. Decode: Alice can find 2 or 4 m such that m2 ≡ c (mod N).
Take the m ∈ SQN .

PRO: Easy for Alice and Bob
Biggest PRO: Factoring Hard is hardness assumption.
CON: Messages have to be in SQN .



Can Rabin’s Encryption Scheme Can Be Cracked?

n is a security parameter

1. Alice gen p, q primes of length n. Let N = pq. Send N.

2. Encode: To send m, Bob sends c = m2 (mod N).

3. Decode: Alice can find m such that m2 ≡ c (mod N). Picks
a poss out somehow.

Vote: Crackable, Uncrackable, Unk

Crackable:
Attack!: Eve picks an m and tricks Alice into sending message m
via m2 ≡ c . Eve is hoping that Bob will find another sqrt of m2.
Say Alice gets m′. Then
m2 − (m′)2 ≡ 0 (mod N).
(m −m′)(m + m′) ≡ 0 (mod N).
m−m′ or m + m′ may share factors with N so do gcd(m−m′,N)
and gcd(m + m′,N). Can factor N and hence – game over!
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What else to known

1. Alice may need to guess which of the 2 or 4 possible messages
is the one to use, which is why its not used. Blum and
Williams showed how to make the message unique, but by the
time they did RSA was pervasive.

2. RSA and Rabin have similar issues which require
padding-randomness

3. RSA has also had attacks as we’ve seen.

4. Rabin can be cracked with Chosen Plaintext Attack.

5. There is a variant of Rabin that thwarts the CPA but not
provably equiv to factoring.

Alternate History: Had timing been different Rabin would have
been the one everyone uses.


