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Another way to make
Rabin Unique



Recall Rabin’s Encryption Scheme

n is a security parameter

1. Alice gen p, q primes of length n. Let N = pq. Send N.

2. Encode: To send m, Bob sends c = m2 (mod N).

3. Decode: Alice can find m such that m2 ≡ c (mod N).

OH!
There will be two or four of them! What to do?
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Making Rabin Unique. We call it RabinU

n is a security parameter

1. Alice gen p, q primes of length n. Let N = pq. NEW: Let x
be a rand element of NSQN . Send (N, x).

2. Encode: To send m, Bob sends

2.1 c = m + xm−1 (mod N),
2.2 0 if m ∈ SQN , 1 if m ∈ NSQN , and
2.3 0 if (cm−1 mod N > m), 1 if (cm−1 mod N < m).

3. Decode: Alice needs m st c = m + xm−1, so solve
m2 − cm + c = 0. This gives 2 or 4 roots. The info about
m ∈ SQN and cm−1 mod N < m. uniquely determines which
root. (We skip details)

Note: RabinU can be cracked iff Factoring is easy.



Yet Another RSA attack



Review of RSA Attacks

1. If N is small, Eve Factors. Response: Use p, q large.

2. If same e, e ≤ L. Low-e attack. Response: Large e.

3. If same e, me < N1 · · ·NL. Low-e attack. Response: Pad m.

4. NY,NY problem. Leaks info. Response: Rand Pad m

5. Timing Attacks: Response: Rand Pad time.

Note items 2 and 3:
e same but N’s Different

How about
N same but e’s Different

Surely that can’t be a problem!

Or can it!
Won’t bother with a vote, onto the next slide.
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Same N, Different e, Eve Cracks RSA

1. Alice gives B1 (N, e1)

2. Alice gives B2 (N, e2)

3. e1, e2 are rel prime (Bad idea?).

Alice sends m to both B1 and B2. Eve sees

1. me1 (mod N)

2. me2 (mod N)

e1, e2 rel prime, so ∃ x , y ∈ Z e1x + e2y = 1. Eve finds x , y with
Euclidean Algorithm and then:

(me1)x × (me2)y (mod N) = me1x+e2y (mod N) = m (mod N)

Caveat: if (say) x < 0 need me1 to have inverse mod N.
Note: Eve found m without factoring N.
Response: Use Different N.
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Advice for Alice When she uses RSA

Alice will use RSA with people A1, . . . ,AL. Will use (Ni = piqi , ei )
for Ai .

1. Pick pi , qi large and different.

2. Can have all ei ’s the same e but should be large.

3. Randomly Pad m

4. Randomly pad time

Same e?: Good idea or bad idea? Will consider on Wedensday.
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Key Exchange With
Matrices and Lattices



DH and RSA Rely on Number Theory

(We are revisiting the guest lecture on this topic.)

1. DH and RSA rely on problems in Number Theory being hard.

2. If DL is easy then DH is cracked (not conversely).

3. If Factoring is easy then RSA is cracked (not conversely).

4. DL and Factoring are in Quantum-P (QP).

5. If Quantum Computers (QC) ever become a reality than DH
and RSA are cracked!

How worried should we be? Discuss



Is QC Really a Threat?

My opinion

1. QCs seem hard to build.

2. I do not work in either QC; I have no special insights.

3. QC is worth studying for the insight it gives into both
quantum and computing.

4. There are classical algorithms for DL and factoring that are
forcing crypto people to up their game.

Final Opinion: Studying public-key crypto that does not depend on
number theory assumptions is intellectually awesome. Might not
be needed for QC, but perhaps for other scenarios.
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Post-Quantum Cryptography

This is a great title since

1. It has nothing to do with Quantum, so its not that hard.

2. It sounds cool and can attract funding.

It just means that we are not using number-theory assumptions.



Small Vectors

Definition
Assume n ∈ N and p is a prime. Pick a random small ~e ∈ Zn

p

means pick each component as a discrete Gaussian with mean 0
and variance to be specified.



LWE Key Exchange (Due to Regev)

LWE Key Exchange: From now on LWE-KE
LWE means Learning With Errors. We will not need this.

1. We will discuss the protocol and how it works.

2. We will discuss hardness assumptions later.



LWE-KE. Two Security Parameters n, n′

1. Alice: rand prime p of length n′, rand n× n matrix A over Zp.

2. Alice: rand ~y ∈ Zn
p, small ~ey ∈ Zn

p. Sends ~yA + ~ey .

3. Bob: rand ~x ∈ Zn
p, small ~ex ∈ Zn

p. Sends A~x + ~ex .

4. Alice computes a = ~y(A~x + ~ex) = ~yA~x + ~y · ~ex .

5. Bob computes b = (~yA + ~ey )~x = ~yA~x + ~x · ~ey .

6. They share ~yA~x

Hey! That does not make sense! Neither one has ~yA~x!
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LWE-KE

Alice has a = ~y(A~x + ~ex) = ~yA~x + (~y · ~ex).

Bob has b = (~yA + ~ey )~x = yA~x + (~x · ey ).

Since ~ex ,~ey small, a ∼ b.

SO WHAT! a ∼ b??? What does ∼ even mean over Zp? What
kind of DELETED – WE ARE BEING TAPED is this? Discuss

CALM DOWN! If pick variance cleverly then with high prob either

a, b ∈ {0, 1, 2, . . . , p/4} ∪ {3p/4, . . . , p − 1} (“close to 0”), OR

a, b ∈ {p/4 + 1, . . . , 3p/4− 1} (“close to p/2”)

(Paper with this on course website under notes.)
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LWE-KE. Two Security Parameters n, n′

1. Alice: rand prime p of length n′, rand n× n matrix A over Zp.

2. Alice: rand ~y ∈ Zn
p, small ~ey ∈ Zn

p. Sends ~yA + ~ey .

3. Bob: rand ~x ∈ Zn
p, small ~ex ∈ Zn

p. Sends A~x + ~ex .

4. Alice computes a = ~y(A~x + ~ex) = ~yA~x + ~y · ~ex . If
a ∈ {0, . . . , p/4} ∪ {3p/4, . . . , p − 1}, sA = 0, else sA = 1.

5. Bob computes b = (~yA + ~ey )~x = ~yA~x + ~x · ~ey . If
b ∈ {0, . . . , p/4} ∪ {3p/4, . . . , p − 1}, sB = 0, else sB = 1.

6. With high prob sA = sB . That is the bit they share.

PRO: Hardness Assumption NOT number-theoretic (next slide)
CON: Only 1 bit.



LWE-KE. HA

Definition
LWE (Learning with Errors) problem p a prime, n ∈ N. ~u ∈ Zn

p is
unknown. We want to learn ~u. Our only operation is to

1. Pick a random ~v ∈ Zn
p

2. Pick a random e ∈ R small

3. We get to ask for (~v , ~v · ~u + e)

Solving LWE quickly means learning ~u with high prob after a poly
(in n) number of operations.

Definition
GAP-SVP is a variant of Shortest Vector Problem.

Known: If can crack LWE-KE then can solve LWE.
Known: If can solve LWE then can crack GAP-SVP problem.
Upshot: If can crack LWE-KE then can solve GAP-SVP problem.
Caveat: The sense of can solve is odd- next slides.



LWE-KE. Hardness Assumption – A Caveat

We claimed:

GAP-SVP ≤ LWE ≤ LWE-KE

This is true. Sort of.
It uses Quantum Reductions.

1. QC : DH cracked, LWE-KE uncrackable if GAP-SVP hard.

2. ¬QC : DH looks save, LWE-KE crackability unknown.

My Opinion: LWE-KE looks uncrackable anyway. With enough fine
tuning and improvements perhaps it could give RSA a run for its
money! (And there is LOTS of money involved! Not quite related
– check out the two music videos on the course website (1) Its all
about the Benjamins, and (2) Its all about the Pentiums.)
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LWE-KE. Practical Considerations

1. There is a version of LWE-KE where small means all
components in

{0, 1,−1}

where each picked with prob 1/3. Note that −1 is p − 1.

2. There is a version of LWE-KE where many bits shared.

3. For both of the above version you gain efficiency but loose
security guarantees.

4. Probably still secure.



Correction to
Diffie-Helman



Recall the Diffie-Helman Key Exchange

1. Alice: rand (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice: rand a ∈ {p3 , . . . ,
2p
3 }, sends ga.

4. Bob: rand b ∈ {p3 , . . . ,
2p
3 }, sends gb.

5. Alice:(gb)a = gab. Bob:(ga)b = gab. gab is shared secret.

Why does Alice: rand a ∈ {p3 , . . . ,
2p
3 }.

Why not a ∈ {0, . . . , p − 1}? Discuss

If g is small and a is small then Eve can determine a from ga.
But: Eve can compute g0, g1, . . . , gL and if she sees any of those
she knows.
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Example

p = 1013
g = 5
a = 6
Eve computes ahead of time:
50 = 1
51 = 5
52 = 25
53 = 125
54 = 625
55 = 86
56 = 430
If Eve sees Alice 430 then she knows a = 6
Nothing special about a being small.



Example

p = 1013
g = 40
a ∈ {p3 , . . . ,

2p
3 } = {337, . . . , 674}

Note: We assume that Eve KNOWS these endpoints.
Eve computes
40337 ≡ 919
40338 ≡ 292
40339 ≡ 537
40340 ≡ 207
40341 ≡ 176
40342 ≡ 962
40343 ≡ 999
If Eve sees Alice send any of 919, 292, 537, 207, 176, 962, 999 then
she knows a
g was big, a was big. Didn’t help!

Of course, Eve has to get VERY LUCKY.
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The Real Diffie-Helman

1. Alice finds a (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice: rand a ∈ {0, . . . , p − 1}, sends ga.

4. Bob: rand b ∈ {0, . . . , p − 1}, sends gb.

5. Alice:(gb)a = gab. Bob:(ga)b = gab. gab is shared secret.

Eve comp g0, g1, . . . , gL. If a ∈ {0, . . . , L} Eve knows a.
Not really a problem:
Either

1. If L is small then Eve would have to get LUCKY to find a.

2. If L is large then Eve is doing LOTS OF computation.

Upshot: a, g small did not make attack much easier for Eve.



Is There Harm In Restricting a, b?

Have shown that requiring a, b ∈ {p3 , . . . ,
2p
3 } won’t help.

Will it hurt?
Vote: restricting a, b will

1. make DH less secure

2. not have any affect.

(1) Make DH less secure.
Key space is smaller, making it easier for Eve.
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How Important Is Public
Key?



Used Everywhere

Public key is mostly used for giving out keys to be used for
classical systems.
This makes the following work:

1. Amazon – Credit Cards

2. Ebay – Paypal

3. Facebook privacy – just kidding, Facebook has no privacy.

4. Every financial institution in the world.

5. Military – though less is known about this.
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Turing Awards

The Turing Award is The Nobel Prize of Computer Science.

Given out every year.

We note when someone mentioned in Public Key Crypto won.

1. 1976- Michael Rabin

2. 1995- Manuel Blum

3. 2002- Ron Rivest, Shamir, Len Adelman

4. 2012- Silvio Micali, Shaffi Goldwasser

5. 2015- Whitfield Diffie, Martin Helman

Future: Oded Regev? Jon Katz?


