
Cryptography

Lecture 03



Recap
Consider the following Encryption Schemes:

1. Shift Cipher: Crackable. Keyspace has only 26 elements.

2. Affine Cipher: Crackable. Keyspace has only 312 elements.

3. Vig Cipher: Crackable by repeats and letter freqs.

4. General Sub: Crackable by letter freqs.

5. Matrix Cipher: Crackable if know (Enc,Dec)-pairs.

6. One-Time Pad: Uncrackable!

7. ElGamal: Uncrackable if we make hardness assumptions.

8. RSA: Uncrackable if we make hardness assumptions.

All of the above are true.
All of the above are not rigorous!
We make them . . . more rigorous
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Assumptions

I With few exceptions, cryptography currently requires
computational assumptions

I Question: If P6=NP was proven then would we still need to
make hardness assumptions? Discuss.

P6=NP not good enough!
Factoring and Discrete Log are not NP-complete and are
thought to not be NP-complete. Possible that:

1. SAT /∈P
2. Factoring is in P.

I Principle: Need assumptions to be explicit
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Importance of clear assumptions

I Allow researchers to (attempt to) validate assumptions by
studying them

I Allow meaningful comparison between schemes based on
different assumptions

I Useful to understand minimal assumptions needed

I Practical implications if assumptions are wrong

I Enable proofs of security



Proofs of Security/Limitations

Proofs give an iron-clad guarantee of security
. . . relative to the definition and assumptions!
Provably secure schemes can be broken!

1. If the definition does not correspond to the real-world threat
model

2. i.e. if attacker can go “outside the security mode”

3. If the assumption is invalid

4. If the implementation is flawed

All four of these happen in the real world.



Examples

1. Outside the Box: I’m from IT and I’m here to help.
2. Outside the Box: Timing attacks. To quote Wikipedia:

A timing attack in when the attacker compromises a
cryptosystem by analyzing the time taken to execute
protocols.

Example: In RSA the amount of time it takes to decrypt gives
a rough idea of the size of the primes involved, cutting down
search space.

3. Bad Implementations of Diffie-Helman
3.1 Pick p or g to small.
3.2 Pick a or b two small (they are random– how to prevent?)
3.3 Use same p, g for a year. Eve has a year to build DL tables.

4. Look up the story of the Maginot Line, an immense wall that
France build to deter a German Invasion. It didn’t work.



Nevertheless. . .

I This does not detract from the importance of having formal
definitions in place

I This does not detract from the importance of proofs of
security



Defining secure
encryption



Crypto definitions (generally)

I Security guarantee/goal

I What we want to achieve and/or what we want to prevent the
attacker from achieving

I Threat model

I What (real-world) capabilities the attacker is assumed to have



Threat models for encryption

I Ciphertext-only attack (CTA). As name indicates, Eve only
has access to the ciphertext. Eve can crack Shift, Affine, Vig,
Gen. Matrix might be an open problem.

I Known-plaintext attack (KPA). Eve has access to previous
plaintexts and what the ciphertext was. Matrix can be
cracked this way if text is long enough.

I Chosen-plaintext attack (CPA). Eve can fool Alice into
encoding a particular plaintext.

I Chosen ciphertext attack (CCA). Eve can fool Bob into telling
her what a particular ciphertext decodes to.



Goal of secure encryption?

I How would you define what it means for encryption scheme
(Gen, Enc, Dec) over message space M to be secure?

I Against a (single) ciphertext-only attack



Secure encryption?

I “Impossible for the attacker to learn the key”

I The key is a means to an end, not the end itself

I Necessary (to some extent) but not sufficient

I Easy to design an encryption scheme that hides the key
completely, but is insecure

I Can design schemes where most of the key is leaked, but the
scheme is still secure



Secure encryption?

I “Impossible for the attacker to learn the plaintext from the
ciphertext”

I What if the attacker learns 90% of the plaintext?



Secure encryption?

I “Impossible for the attacker to learn any character of the
plaintext from the ciphertext”

I What if the attacker is able to learn (other) partial information
about the plaintext?

I e.g. salary is greater than $75K

I What if the attacker guesses a character correctly?



Perfect Secrecy



Perfect secrecy

I “Regardless of any prior information the attacker has about
the plaintext, the ciphertext should leak no additional
information about the plaintext”

I The right notion!

I How to formalize?



Probability review

I Random variable (r.v.): variable that takes on (discrete)
values with certain probabilities

I Probability distribution for a r.v. specifies the probabilities
with which the variable takes on each possible value

I Each probability must be between 0 and 1

I The probabilities must sum to 1



Probability review

I Event: a particular occurrence in some experiment

I Pr[E ]: probability of event E

I Conditional probability: probability that one event occurs,
given that some other event occurred

I Pr[A|B] = Pr[A∧B]
Pr [B]

I To RV’s X ,Y are independent if for all x , y :
Pr[X = x |Y = y ] = Pr[X = x ]

Important: X ,Y independent if Knowing that Y = y does
not help you figure out if X = x .
Discuss: Why will this notion be important for defininig
perfect security?



Probability distributions
Normally a RV returns a number. We allow it to be a message.
Below are all the messages I could send, with the prob that I send
them (unrelated to whether they are true).

1. Today 456 went well. Pr = 1
2 .

2. Today 456 went badly. Pr = 1
100 .

3. All 456 students submitted HW Monday. Pr = 1
100 .

4. I proved a new result in crypto. Pr = 1
50 .

5. I proved a new result about The Muffin Problem. Pr = 9
25 .

6. I saw a student in office hours. Pr = 1
10

Note:
Should we assume that Eve knows this distribution? Discuss.

YES.
Recall that we assume Eve knows distribution of letters in English.
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Recall

I A private-key encryption scheme is defined by a message
space M and algorithms (Gen, Enc, Dec):

I Gen (key generation algorithm) generates k

I Enc (encryption algorithm): takes key k and message m ∈M
as input; outputs ciphertext c

c ← Enck(m)

I Dec (decryption algorithm): takes key k and ciphertext c as
input; outputs m

m← Deck(c)



Notation

I K (key space) — set of all possible keys

I M (message space) — set of all possible messages

I C (ciphertext space) — set of all possible ciphertexts



Distribution on Keys

I Let K be the random variable denoting the key

I K ranges over K

I Fix some encryption scheme (Gen, Enc, Dec)

I Gen defines a probability distribution for K:

Pr[K = k] = Pr[Gen outputs key k]

Usually Uniform.



Message and Key Independent

I Random variables M and K are independent

I i.e., the message that a party sends does not depend on the
key used to encrypt that message



Distribution on Ciphertext

I Fix some encryption scheme (Gen, Enc, Dec) and some
distribution for M

I Consider the following (randomized) experiment:

1. Choose a message m, according to the given distribution

2. Generate a key k using Gen

3. Compute c ← Enck(m)

I This defines a distribution on the ciphertext!

I Let C be a random variable denoting the value of the
ciphertext in this experiment



Example 1

I Consider the shift cipher

I So for all k ∈ {0, . . . , 25}, Pr[K = k] = 1
26

I Say Pr[M = a] = 0.7, Pr[M = z ] = 0.3. So the message is
ONLY 1 character.

I What is Pr[C = b]? Discuss?

I Either M = a and K = 1, or M = z and K = 2

Pr[C = b] = Pr[M = a] · Pr[K = 1] + Pr[M = z ] · Pr[K = 2]

= 0.7 · 1

26
+ 0.3 · 1

26
=

1

26

1
26? Hmmm? What if we had diff prob of messages.
If replace 0.7 with p and 0.3 with 1− p do we still get 1

26?
Discuss.
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Example 2
Consider the following distribution. Shift Cipher being used.
Pr[M = ab] = 1

3 , Pr[M = dg ] = 2
3

Pr[C = ef ] = Discuss

Pr[C = ef |M = ab]·Pr[M = ab]+Pr[C = ef |M = dg ]·Pr[M = dg ]

=
1

26
· 1

3
+ 0 · 2

3
=

1

78

What is Pr[C = ei ]? Discuss

Pr[C = ei |M = ab]·Pr[M = ab]+Pr[C = ei |M = dg ]·Pr[M = dg ]

= 0 · 1

3
+ 0 · 2

3
= 0
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Example 2- Discussion
We had

Pr[M = ab] = 1
3 , Pr[M = dg ] = 2

3

If we had
Pr[M = ab] = 1

2 , Pr[M = dg ] = 1
2

Would the cipher be more secure? Discuss.

No.

Before seeing the ciphertext Eve knew that
Pr[M = ab] = 1

3 , Pr[M = dg ] = 2
3

We want that after seeing the ciphertext she knows that

Pr[M = ab] = 1
3 , Pr[M = dg ] = 2

3
If so then Eve has not learned NOTHING from ciphertext!
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Perfect secrecy
Informal: Let m be a message.
Before Eve sees the ciphertext she knows Pr(M = m).
After Eve sees the ciphertext we want her to

not gain any knowledge whatsoever

Formal: Encryption scheme (Gen, Enc, Dec) with message space
M and ciphertext space C is perfectly secret if for every
distribution over M, every m ∈M, and every c ∈ C with
Pr[C = c] > 0, it holds that

Pr[M = m|C = c] = Pr[M = m]

The distribution of M does not change conditioned on observing he
ciphertext.



Be Impressed!

In Mathematics often getting the right definition is the hard part!

That we have a way of formally defining Perfect Secrecy is very
impressive!

This definition is one of the things that marks the line between
Classical and Modern Cryptography.



Shift Cipher

Does the Shift Cipher have perfect secrecy? Vote

1. YES

2. NO

3. OTHER

OTHER- the question is ill defined. Need to know the distribution
of messages.
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Does the Shift Cipher have perfect secrecy? Vote

1. YES

2. NO
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of messages.



1-letter Shift Cipher IS Perfectly Secure

Assume (∀x)[Pr(M = x) = 1
26 ].

Need to calculate Pr[M = a|C = d ].

Need Pr[M = a ∧ C = d ] = Pr[M = a]× Pr[k = 3] = 1
26 ×

1
26

Pr[C = d ] = Pr[M = a]Pr[k = 3] + · · ·+ Pr[M = z ]Pr[k = 4]
= 26× 1

26 ×
1
26 = 1

26 .

So
Pr[M = a|C = d ] = Pr[M=a∧C=d ]

Pr[C=d ] = ( 1
26)2/ 1

26 = 1
26 = Pr[M = a]

What I did for M = a and C = d works for any pair.

Is this enough to prove that 1-letter Shift is Perfectly Secure?
Discuss.
NO- we need this to work for ANY distribution. May be HW.
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2-letter Shift Cipher NOT Perfectly Secure

Consider the shift cipher with 2-letter messages and distribution

1. Pr[M = ab] = 1
2 ,

2. Pr[M = ac] = 1
2

Take m = ab and c = pr
Pr[M = ab|C = pr ] = 0 6= Pr[M = ab]



Conclusion

I The shift cipher is not perfectly secret!

I At least not for 2-character messages

I How to construct a perfectly secret scheme?



Recall the One-time pad

I Let M = {0, 1}n

I Gen: choose a uniform key k ∈ {0, 1}n

I Enck(m) = k ⊕m

I Deck(c) = k ⊕ c

I Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



One-time pad


