Threshold Secret Sharing: Information-Theoretic

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Threshold Secret Sharing

Zelda has a secret $s \in \{0, 1\}^n$.

Def: Let $1 \le t \le m$. (t, L)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_L such that:

- 1. If any t get together than they can learn the secret.
- 2. If any t 1 get together they cannot learn the secret.

Cannot learn the secret will be info-theoretic. Even if t - 1 people have big fancy supercomputers they cannot learn *s*. We will later look at comp-security.

Applications

Rumor: Secret Sharing is used for the Russian Nuclear Codes. There are three people (one is Putin) and if two of them agree to launch, they can launch.

For people signing a contract long distance secret sharing is used as a building block in the protocol.

 A_1 , A_2 , A_3 , A_4 such that

- 1. If all four of A_1, A_2, A_3, A_4 get together they can find s.
- 2. If any three of them get together then learn **NOTHING**.

1. Zelda breaks s up into $s = s_1 s_1 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

2. Zelda gives A_i the string s_i .

Does this work?

1. Zelda breaks s up into $s = s_1 s_1 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

2. Zelda gives A_i the string s_i .

Does this work?

1. If A_1, A_2, A_3, A_4 get together they can find s.

1. Zelda breaks s up into $s = s_1 s_1 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

2. Zelda gives A_i the string s_i .

Does this work?

1. If A_1, A_2, A_3, A_4 get together they can find s. **YES!!**

1. Zelda breaks s up into $s = s_1 s_1 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

2. Zelda gives A_i the string s_i .

Does this work?

If A₁, A₂, A₃, A₄ get together they can find *s*. YES!!
 If any three of them get together they learn NOTHING.

1. Zelda breaks s up into $s = s_1 s_1 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

2. Zelda gives A_i the string s_i .

Does this work?

- 1. If A_1, A_2, A_3, A_4 get together they can find s. **YES!!**
- 2. If any three of them get together they learn **NOTHING**. **NO**.

(日) (日) (日) (日) (日) (日) (日) (日)

- 2.1 A_1 learns s_1 which is $\frac{1}{4}$ of the secret!
- 2.2 A_1 , A_2 learn s_1s_2 which is $\frac{1}{2}$ of the secret!
- 2.3 A_1 , A_2 , A_3 learn $s_1s_2s_3$ which is $\frac{3}{4}$ of the secret!

What do we mean by NOTHING?

If any three of them get together they learn **NOTHING** Informally:

- Before Zelda gives out shares, if any three A_i, A_j, A_k get together, they know BLAH_{i,j,k}.
- 2. After Zelda gives out shares, if any three A_i, A_j, A_k get together, they know $BLAH_{i,j,k}$.
- 3. Giving out the shares tells each triple **NOTHING** they did not already know.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

If A_i, A_j, A_k have unlimited computing power

What do we mean by NOTHING?

If any three of them get together they learn **NOTHING** Informally:

- Before Zelda gives out shares, if any three A_i, A_j, A_k get together, they know BLAH_{i,j,k}.
- 2. After Zelda gives out shares, if any three A_i, A_j, A_k get together, they know $BLAH_{i,j,k}$.
- 3. Giving out the shares tells each triple **NOTHING** they did not already know.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

If A_i, A_j, A_k have unlimited computing power they still learn **NOTHING**.

What do we mean by NOTHING?

If any three of them get together they learn **NOTHING** Informally:

- Before Zelda gives out shares, if any three A_i, A_j, A_k get together, they know BLAH_{i,j,k}.
- 2. After Zelda gives out shares, if any three A_i, A_j, A_k get together, they know $BLAH_{i,j,k}$.
- 3. Giving out the shares tells each triple **NOTHING** they did not already know.

If A_i, A_j, A_k have unlimited computing power they still learn **NOTHING**.

Information-Theoretic Security

Is (4,4)-Secret Sharing Possible?

VOTE: Is (4, 4)-Secret sharing possible?

- 1. YES
- 2. NO
- 3. YES given some hardness assumption

4. UNKNOWN TO SCIENCE

Is (4,4)-Secret Sharing Possible?

VOTE: Is (4, 4)-Secret sharing possible?

- 1. YES
- 2. NO
- 3. YES given some hardness assumption

4. UNKNOWN TO SCIENCE

YES

Random String Approach

Zelda gives out shares of the secret

- 1. Secret $s \in \{0,1\}^n$. Zelda gen random $r_1, r_2, r_3 \in \{0,1\}^n$.
- 2. Zelda gives $A_1 s_1 = r_1$. Zelda gives $A_2 s_2 = r_2$. Zelda gives $A_3 s_3 = r_3$. Zelda gives $A_4 s_4 = s \oplus r_1 \oplus r_2 \oplus r_3$
- A_1 , A_2 , A_3 A_4 Can Recover the Secret

 $s_1 \oplus s_2 \oplus s_3 \oplus s_4 = r_1 \oplus r_2 \oplus r_3 \oplus r_1 \oplus r_2 \oplus r_3 \oplus s = s$

Easy to see that if a triple get together they learn NOTHING

(2, 4)-Secret Sharing using Random Strings

For each $1 \le i < j \le 4$

- 1. Zelda generates random $r \in \{0, 1\}^n$.
- 2. Zelda gives A_i the strings $s_{i,(i,j)} = ((i,j), r)$.
- 3. Zelda gives A_j the strings $s_{j,(i,j)} = ((i,j), r \oplus s)$.

A_i , A_j Can Recover the Secret

 A_i takes ((i, j), r) and just uses the r. A_j takes $((i, j), r \oplus s)$ and just uses the $r \oplus s$. They both compute $r \oplus r \oplus s = s$.

Easy to see that one person learns NOTHING

(L, L)-Random String Method

```
People: A_1, \ldots, A_L. Secret s.

1. Zelda gen rand r_1, \ldots, r_{L-1}.

2. A_1 get r_1

A_2 get r_2

\vdots

A_{L-1} gets r_{L-1}

A_L gets s \oplus r_1 \oplus \cdots \oplus r_{L-1}
```

3. If they all get together they will XOR all their strings to get s

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

We use this as building block for gen case.

(t, L) Secret Sharing

People: A_1, \ldots, A_L . $S_1, \ldots, S_m \subseteq \{A_1, \ldots, A_L\}$ are all the sets of size t. $(m = {L \choose t})$.

1. For every $1 \le j \le m$ Zelda does (t, t) secret sharing with the elements of S_j but also prepends every string with j.

(日) (日) (日) (日) (日) (日) (日) (日)

- 2. If the people in S_j get together they XOR together strings prepended with j (do not use the j).
- 3. No subset can get the secret.

PRO: Can always do Threshold Secret Sharing.

CON: You are giving people A LOT of strings!

How Many Strings Does A_i Get in (5, 10)-Secret Sharing?

If do (5,10) secret sharing then how many strings does A_1 get? A_1 gets a string for every $J \subseteq \{1, \ldots, 10\}$, |J| = 5, $1 \in J$. Equivalent to:

(日) (日) (日) (日) (日) (日) (日) (日) (日)

 A_1 gets a string for every $J \subseteq \{2, \ldots, 10\}$, |J| = 4.

How many sets? Discuss

How Many Strings Does A_i Get in (5, 10)-Secret Sharing?

If do (5,10) secret sharing then how many strings does A_1 get? A_1 gets a string for every $J \subseteq \{1, \ldots, 10\}$, |J| = 5, $1 \in J$. Equivalent to:

 A_1 gets a string for every $J \subseteq \{2, \ldots, 10\}$, |J| = 4.

How many sets? Discuss

$$\begin{pmatrix} 9\\4 \end{pmatrix} = 126 \text{ strings}$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

How Many Strings Does A_i Get in (L/2, L)-Secret Sharing?

If do (L/2, L) secret sharing then how many strings does A_1 get?

(日) (日) (日) (日) (日) (日) (日) (日) (日)

 A_1 gets a string for every $J \subseteq \{1, \ldots, L\}$, $|J| = \frac{L}{2}$, $1 \in J$. Equivalent to:

 A_1 gets a string for every $J \subseteq \{2, ..., L\}$, $|J| = \frac{L}{2} - 1$. How many sets? **Discuss** How Many Strings Does A_i Get in (L/2, L)-Secret Sharing?

If do (L/2, L) secret sharing then how many strings does A_1 get?

 A_1 gets a string for every $J \subseteq \{1, \ldots, L\}$, $|J| = \frac{L}{2}$, $1 \in J$. Equivalent to:

 A_1 gets a string for every $J \subseteq \{2, ..., L\}$, $|J| = \frac{L}{2} - 1$. How many sets? **Discuss**

$$\binom{L-1}{\frac{L}{2}-1} \sim \frac{2^L}{\sqrt{L}} \text{ strings}$$

Thats A LOT of Strings!

Can We Reduce The Number of Strings for (L/2, L)?

Thats a lot of strings!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Can We Reduce The Number of Strings for (L/2, L)?

In our (L/2, L)-scheme each A_i gets $\sim \frac{2^L}{\sqrt{L}}$ strings. **VOTE**

- 1. Requires roughly 2^L strings.
- 2. $O(\beta^L)$ strings for some $1 < \beta < 2$ but not poly.

- 3. $O(L^a)$ strings for some a > 1 but not linear.
- 4. O(L) strings but not sublinear.
- 5. $O(\log L)$ strings but not constant.
- 6. O(1) strings.

Can We Reduce The Number of Strings for (L/2, L)?

In our (L/2, L)-scheme each A_i gets $\sim \frac{2^L}{\sqrt{L}}$ strings. **VOTE**

- 1. Requires roughly 2^L strings.
- 2. $O(\beta^L)$ strings for some $1 < \beta < 2$ but not poly.
- 3. $O(L^a)$ strings for some a > 1 but not linear.
- 4. O(L) strings but not sublinear.
- 5. $O(\log L)$ strings but not constant.
- 6. O(1) strings.

You can always do this problem with 1 string. Really!