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Threshold Secret Sharing

Zelda has a secret s ∈ {0, 1}n.

Def: Let 1 ≤ t ≤ m. (t, L)-secret sharing is a way for Zelda to
give strings to A1, . . . ,AL such that:

1. If any t get together than they can learn the secret.

2. If any t − 1 get together they cannot learn the secret.

Cannot learn the secret will be info-theoretic. Even if t − 1
people have big fancy supercomputers they cannot learn s. We will
later look at comp-security.



Applications

Rumor: Secret Sharing is used for the Russian Nuclear Codes.
There are three people (one is Putin) and if two of them agree to
launch, they can launch.

For people signing a contract long distance secret sharing is used
as a building block in the protocol.



How Many Strings Does Ai Get in (L/2, L)-Secret Sharing?

With the Random String Method:
If do (L/2, L) secret sharing then how many strings does A1 get?

A1 gets a string for every J ⊆ {1, . . . , L}, |J| = L
2 , 1 ∈ J.

Equivalent to:

A1 gets a string for every J ⊆ {2, . . . , L}, |J| = L
2 − 1.

How many sets? Discuss

(
L− 1
L
2 − 1

)
∼ 2L√

L
strings

Thats A LOT of Strings!
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Can We Reduce The Number of Strings for (L/2, L)?
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Can We Reduce The Number of Strings for (L/2, L)?

In our (L/2, L)-scheme each Ai gets ∼ 2L√
L

strings.

VOTE

1. Requires roughly 2L strings.

2. O(βL) strings for some 1 < β < 2 but not poly.

3. O(La) strings for some a > 1 but not linear.

4. O(L) strings but not sublinear.

5. O(log L) strings but not constant.

6. O(1) strings.

You can always do this problem with 1 string. Really!
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Secret Sharing With Polynomials

We do (3, 6)-Secret Sharing.

1. Secret s. Zelda picks prime p ∼ s, Zelda works mod p.

2. Zelda gen rand numbers a2, a1 ∈ {0, . . . , p − 1}
3. Zelda forms polynomial f (x) = a2x

2 + a1x + s.

4. Zelda gives A1 f (1), A2 f (2), . . ., A6 f (6) (all mod p). These
are all of length ∼ |s|.

1. Any 3 have 3 points from f (x) so can find f (x), s.

2. Any 2 have 2 points from f (x). Constant term (s) anything!.



Example

s = 20. We’ll use p = 23.

1. Zelda picks a2 = 8 and a1 = 13.

2. Zelda forms polynomial f (x) = 8x2 + 13x + 20.

3. Zelda gives A1 f (1) = 18, A2 f (2) = 9, A3 f (3) = 16, A4

f (4) = 16, A5 f (5) = 9, A6 f (6) = 18.

If A1,A3,A4 get together and want to find f (x) hence s.
f (x) = a2x

2 + a1x + s.
f (1) = 18: a2 × 12 + a1 × 1 + s ≡ 18 (mod 23)
f (3) = 16: a2 × 32 + a1 × 3 + s ≡ 16 (mod 23)
f (4) = 16: a2 × 42 + a1 × 4 + s ≡ 16 (mod 23)
3 linear equations in, 3 variable, over mod 23 can be solved.
Note: Only need constant term s but can get all coeffs.



What if Two Get Together?

What if A1 and A3 get together:
f (1) = 18: a2 × 12 + a1 × 1 + s ≡ 18 (mod 23)
f (3) = 16: a2 × 32 + a1 × 3 + s ≡ 16 (mod 23)
Can they solve these to find s Discuss.

No. However, can they use these equations to eliminate some
values of s? Discuss.

No. ANY s is consistent. If you pick a value of s you then have
two equations in two variables that can be solved.

Important: Information-Theoretic Secure: if A1 and A3 meet they
learn NOTHING. If they had big fancy supercomputers they would
still learn NOTHING.
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A Note About Linear Equations

The three equations below, over mod 23, can be solved:
a2 × 12 + a1 × 1 + s ≡ 18 (mod 23)
a2 × 32 + a1 × 3 + s ≡ 16 (mod 23)
a2 × 42 + a1 × 4 + s ≡ 16 (mod 23)

Could we have solved this had we used mod 24?
VOTE

1. YES

2. NO

NO
Need a domain where every number has a mult inverse.
Over mod p, p primes, all numbers have mult inverses.
Over Mod 24 even number do not have mult inverse.
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Threshold Secret Sharing With Polynomials: Ref

Will be on next few slides.
Due to Adi Shamir
How to Share a Secret
Communication of the ACM
Volume 22, Number 11
1979



Threshold Secret Sharing With Polynomials

Zelda wants to give strings to A1, . . . ,AL such that

Any t of A1, . . . ,AL can find s. Any t − 1 learn NOTHING.

1. Secret s. Zelda picks prime p ∼ s, Zelda works mod p.

2. Zelda gen rand at−1, . . . , a1 ∈ {0, . . . , p − 1}
3. Zelda forms polynomial f (x) = at−1x

t−1 + · · ·+ a1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i) mod p.

1. Any t have t points of f (x) so can find f (x) and s.

2. Any t − 1 have t − 1 points of f (x). Constant term (s) could
be anything!.



We Used Polynomials. Could Use. . .

What did we use about degree t − 1 polynomials?

1. t points determine a the polynomial (we need constant term).

2. t − 1 points give no information about constant term.

Could do geometry over Z3
p. A Plane in Z3

p is:

{(x , y , z) : ax + by + cz = d}

1. 3 points in Z3
p determine a plane.

2. 2 points in Z3
p give no information about d .

This approach is due to George Blakely, Safeguarding
Cryptographic Keys, International Workshop on Managing
Requirements, Vol 48, 1979.
We will not do secret sharing this way, though one could.



We Used Polynomials. Could Use. . .

We won’t go into details but there are two ways to use the
Chinese Remainder Theorem to do Secret Sharing.

Due to:
C.A. Asmuth and J. Bloom. A modular approach to key
safeguarding. IEEE Transactions on Information Theory Vol
29, Number 2, 208-210, 1983.

And Independently

M. Mignotte How to share a secret, Cryptography:
Proceedings of the Workshop on Cryptography, Burg
Deursetein, Volume 149 of Lecture Notes in Computer
Science, 1982.



Features and Caveats of Poly Method

Imagine that you’ve done (t, L) secret sharing with polynomial,
p(x). So for 1 ≤ i ≤ L, Ai has f (i).

1. Feature: If more people come FINE- can extend to (t, L + a)
by giving AL+1, f (L + 1), . . ., AL+a, f (L + a).

2. Caveat: If L > p then you run out of points to give people.
We will always assume L < p.

3. Caveat: If L > p there are still ways to do this, but we won’t
get into that.



Length of Shares

s = 1111, length 4. This is 15 in base 10, so we go to smallest
prime > 15, namely 17.

We use p = 17. s = 1111, |s| = 4.

Elements of Z17 are represented by strings of length 5

1. Everyone gets at least one share.

2. All shares length 5, even though s is length 4.

Can we always get get length n? Length n + 1?



Length of Shares

If |s| = n want prime p with 2n < p.
Known: For all n there exists prime p with 2n ≤ p ≤ 2n+1.

Upshot: The secret is length n, the shares are of length n + 1.

Good News: Every Ai gets ONE share.

Bad News: That share is of length n + 1, not n.

VOTE: Can Zelda do threshold secret sharing where every student
gets ONE share of length n?

1. YES

2. NO

3. YES given some hardness assumption

4. UNKNOWN TO SCIENCE

YES
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Why Did We Use Primes?

We used Zp since need to inverses.
Def: A Field is a set F together with operations +,× such that

1. There is a 0 element such that (∀x)[x + 0 = x ].

2. There is a 1 element such that (∀x)[x × 1 = x ].

3. (∀x , y)[(x + y = y + x) ∧ (x × y = y × x)].

4. (∀x , y , z)[x × (y + z) = x × y + x × z ].

5. (∀x)(∃y)[x + y = 0].

6. (∀x 6= 0)(∃y)[x × y = 1]. (This one is KEY.)

WE USED: p prime iff Zp a field.



Can we use a different field?

KEY: There is a field of size pn for all primes p and n ≥ 1.

WE USE: For all n there is a field on 2n elements.
If secret is s of length n, use the field on 2n elements. All elements
of it are of length n.

Upshot: For threshold there is a secret sharing scheme where
everyone gets ONE share of size EXACTLY the size of the secret.



Example: A Field of 32 elements

Z2[x ] is the set of polys over Z2. x5 + x2 + 1 is irreducible in Z2[x ].

Field on 25 elements:

1. The elements are polys in Z2[x ] of degree ≤ 4.

2. Addition and subtraction are as usual.

3. Mult is MOD x5 + x2 + 1. So Mult two polys together and
Replace x5 with −x2 − 1 = x2 + 1
Replace x6 with −x3 − x = x3 + x
Replace x7 with −x4 − x2 = x4 + x2

Replace x8 with −x5 − x3 = x5 + x2 ≡ 2x2 + 1

4. One can show that this is a Field- mult has inverses. For that
proof need that the poly x5 + x2 + 1 is irreducible.



Field on pa Elements

p a prime.
Zp[x ] is the set of polynomials over Zp.
f (x) is irreducible in Zp[x ], and of degree a

Field on pa elements:

1. The elements are polys in Zp[x ] of degree ≤ a− 1.

2. Addition and subtraction are as usual.

3. Mult is MOD f (x). So Multiply two polys together and mod
down to degree ≤ a− 1 by assuming f (x) = 0.

4. One can show that this is a Field- mult has inverses. For that
proof need that the poly f (x) is irreducible.



Practical and Pedagogical Point

1. We could from now on, on HW and exams and slides and
notes, work over the field on 2n elements and have shares of
length exactly the size of the secret.

2. That would be madness! Madness I say!

3. For pedagogue we work over Zp for some well chosen p.

4. We will cheat and lie. We will say the shares are the same
length as the secret when may be off by 1 (YES, just by 1)
because we use primes instead of GF (2n) (Whats that? Galois
Field on 2n elements. Duh :-) )

5. In the real world they use primes. I think. I’ll ask Putin.
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Can Shares be SHORTER than Secret?

Thm There is a (t, L) scheme, |s| = n, all shares ≤ 2n
t .

Zelda’s secret is s = s0s1s2 · · · st−1 where each si is of length n
t .

Zelda uses Zp, p ∼ 2n/t . Zelda gen rand k of length n.
k = k0k1 · · · kt−1, |ki | = n

t . Zelda creates two polynomials:

f (x) = (st−1 ⊕ kt−1)x t + · · · (s1 ⊕ k1)x + (s0 ⊕ k0)

g(x) = kt−1x
t + · · · k1x + k0

For 1 ≤ i ≤ m Zelda gives Ai (f (i), g(i)).
Note: Everyone gets a share of size 2n

t .
Note: Scheme uses all coeffs not just constant.
Next slide on recovery and security.



Recover and Security

Recovery: If t get together they can determine both polynomials
(not just the constant term). Hence they all know:

st−1 ⊕ kt−1, · · · , s1 ⊕ k1, s0 ⊕ k0

kt−1, · · · , k1, k0
From this can easily get st−1, . . . , s1, s0.

Discuss Security: t − 1 people cannot learn anything.



Security

You’ve Been Punked!!
A1, . . . ,At−1 can get some information.
They know that At has a share of length 2n

t .
They do the following:

CAND = ∅. CAND will be set of Candidates for s.

For x ∈ {0, 1}2n/t (go through ALL shares At could have)

A1, . . . ,At−1 pretend At has x and deduce candidates secret s ′

CAND := CAND ∪ {s ′}
Secret is in CAND. |CAND| = 22n/t < 2n. So we have
eliminated many strings from being the s
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Can we use even shorter shares?

|s| = n, (t, L)-secret sharing.
Is there a scheme where someone gets share of size < n? We will
allow others to get long shares (larger than n)
VOTE

1. (∃) scheme, A1 gets size n − 1.

2. (∃) scheme, A1 gets size dn/2e.
3. (∃) scheme, A1 gets size

⌈√
n
⌉
.

4. (∃) scheme, A1 gets size dlog ne.
5. NO- in ANY scheme A1 MUST get size ≥ n.

NO- proof on next slide.
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Nobody Gets Short Share

They know that At has a share of length n − 1.
They do the following:
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