
Verifiable Secret Sharing
Voting



Threshold Secret Sharing

Zelda has a secret s ∈ {0, 1}n.

Def: Let 1 ≤ t ≤ m. (t, L)-secret sharing is a way for Zelda to
give strings to A1, . . . ,AL such that:

1. If any t get together than they can learn the secret.

2. If any t − 1 get together they cannot learn the secret.

Cannot learn the secret Last lecture this was Info-Theoretic.
This lecture we consider info-theoretic and comp-theoretic.



A Scenario

1. (5, 9) Secret Sharing.

2. The secret is s. p ∼ s. Zelda picks rand r4, r3, r2, r1 ∈ Zp,
forms the poly f (x) = r4x

4 + r3x
3 + r2x

2 + r1x + s.

3. For 1 ≤ i ≤ 9 Zelda gives Ai f (i).

A2,A4,A7,A8,A9 get together. BUT the do not trust each other!

1. A2 thinks that A7 is a traitor!

2. A7 thinks A4 will confuse them just for the fun of it.

3. A8 and A9 got into a knife fight over who proved that the
muffin problem always has a rational solution. (Used same
knife that was used to cut the muffins in 5

12 : 7
12 ratio.)

4. The list goes on

Hence we need to VERIFY that everyone is telling the truth. This
is called VERIFIABLE secret sharing, or VSS.
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First Attempt at (t, L) VSS

1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp

f (x) = rt−1x
t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i), g , g s .
(We think discrete log is HARD so s not revealed.)

Recover: The usual – any group of t can determine the
polynomial f and hence the constant term.

Verify: Once a group has s they compute g s and see if it matches.

If so then they know they have the correct secret.
If no then they know someone is a stinking rotten liar

1. If verify s there may still be two liars who cancel out.

2. If do not agree they do not know who the liar was.

3. Does not serve as a deterrent.
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Second Attempt at (t, L) VSS

1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp.
f (x) = rt−1x

t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i).

5. Zelda gives to EVERYONE the values g f (1), . . ., g f (L), g .
(We think discrete log is HARD so f (i) not revealed.)

Recover: The usual – any group of t can blah blah.

Verify: If Ai says f (i) = 17, they can all then check of g17 is what
Zelda said g f (i) is.

If so then they know Ai is truthful.
If not then they know Ai is a stinking rotten liar.

1. PRO: If someone lies they know right away.

2. PRO: Serves as a deterrent.

3. CON: L public strings A LOT!, may need to update.
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Third Attempt at (t, L) VSS
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Verify: Ai reveals f (i) = 17. Group computes: g17 and:
(g rt−1)i

t−1 × (g rt−2)i
t−2 × · · · × (g r1)i

1 × (g s)i
0

= g rt−1i t−1+rt−2i t−2+···+r1i1+s = g f (i)

If this is g17 then Ai is truthful.
If not then Ai is dirty stinking liar.

1. PRO: If someone lies they know right away.

2. PRO: Serves as a deterrent.

3. PRO: t public strings, never need to update.

4. CAVEAT: Security – see next slide.
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Security and References

The scheme above for VSS is by Paul Feldman.
A Practical Scheme for non-interactive Verifiable Secret
Sharing
28th Conference on Foundations of Computer Science
(FOCS)
1987
They give proof of security based on zero-knowledge protocols
which are themselves based on blah blah.
Upshot: Pretty good Hardness Assumption.



Electronic Voting Using
Public Key Crypto And

Secret Sharing



Math Needed For Paillier Public Key Encryption

I N = pq where p, q are primes.

I Let m ∈ ZN .

I Let r ∈ Z∗
N picked at random.

I Let c = (1 + N)mrN (mod N2). (NOTE mod N2 not N)

1. Given c , p, q, determining m is EASY. (We omit proof but its
not hard. In Katz’s book.)

2. Given c ,N, determining m is believed to be hard



The Paillier Public Key Encryption

n is a security parameter.

1. Alice picks p, q primes length n, let N = pq, broadcasts N.

2. To send m ∈ ZN Bob picks random r ∈ Z∗
N , broadcasts

(1 + N)mrN (mod N2)

3. As noted in last slide, Alice can decode.

4. As noted in last slide, we think Eve cannot.

Hardness Assumption: The following is hard: given a ∈ ZN2 , is it
an Nth power. (That this is equivalent to breaking the scheme is
not obvious. Not hard – it is in Katz’s book.)



Nice Property of Paillier Encryption

Alice broadcasts N to B1,B2.
B1 broadcasts c1 = ENC (m1) = (1 + N)m1rN1 .
B2 broadcasts c2 = ENC (m2) = (1 + N)m2rN2 .

Important Note:

c1c2 = (1 + N)m1rN1 (1 + N)m2rN2 = (1 + N)m1+m2(r1r2)N

= ENC (m1 + m2)

Scenario: If B1 broadcasts c1, B2 broadcasts c2, and Alice doesn’t
see it, but does see c1c2, then Alice can determine m1 + m2.



Nice Property of Paillier Encryption-II

Alice broadcasts N to B1,B2, . . . ,BS .
B1 broadcasts c1 = ENC (m1).
B2 broadcasts c2 = ENC (m2).
...
BS broadcasts cS = ENC (mS).

Important Note:

c1 · · · cS = (1+N)m1rN1 · · · (1+N)mS rNS = (1+N)m1+···+mS (r1 · · · rS)N

= ENC (m1 + · · ·+ mS)

Scenario: If B1 broadcasts c1, . . ., BS broadcasts cS , and Alice
doesn’t see c1, . . . , cS , but does see c1 · · · cS , then Alice can
determine m1 + · · ·+ mS .



Application to Voting

A and B supervise voting. B1, . . . ,BS vote NO (0) or YES (1).

1. Alice picks p, q primes length n, let N = pq, broadcasts N.

2. Bi votes mi ∈ {0, 1} and prepares ci .

3. Bi send vote to Bob (NOT to Alice).

4. Bob computes c = c1c2 · · · cS .

5. Bob gives c to Alice.

6. Alice can find m1 + · · ·+mS . If < S
2 then NO, otherwise YES.

Is there a problem with this? Discuss

Problem: If S > N2 then sum might overflow and go back to 0.
Solution: Make sure N2 > S . Duh.
Security: Neither Alice nor Bob knows how anyone voted.
Problem: Alice could lie to make The All Night Party win.
Problem: If Alice obtains ci then she could find out how Bi voted.
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Application to Voting

Alice and Bob joined by reps from each party Q1, . . . ,Qt .

1. Alice picks p, q primes length n, let N = pq, broadcasts N.

2. Bi votes mi ∈ {0, 1} and prepares ci .

3. Bi sends vote to Bob (NOT Alice, Q1, . . . ,Qt).

4. Bob computes c = c1c2 · · · cS and broadcasts c .

5. Alice: VSS (t, t) – secret p, people Q1, . . . ,Qt .

6. Q1, . . . ,Qt have p, q. They compute DEC (c).

7. Q1, . . . ,Qt agree on the winner.

Security: Neither Alice nor Bob knows how anyone voted.

Security: The outcome is correct since all Q1, . . . ,Qt verify.
Problem: If any Qj obtains ci then Qj could find out how Bi

voted.
Problem: This can be solved. Omitted. In Katz’s book.
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For More on Secret Sharing

Google Scholar is a website of all papers (or at least most)
I went there and googled

”Secret Sharing”
How many papers are on it?
VOTE

1. between 1 and 100

2. between 100 and 1000

3. between 1000 and 10,000

4. between 10,000 and 20,000

5. over 20,000

58,000.
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