
Verifiable Secret Sharing
Voting

Threshold Secret Sharing

Zelda has a secret s ∈ {0, 1}n.

Def: Let 1 ≤ t ≤ m. (t, L)-secret sharing is a way for Zelda to
give strings to A1, . . . ,AL such that:

1. If any t get together than they can learn the secret.

2. If any t − 1 get together they cannot learn the secret.

Cannot learn the secret Last lecture this was Info-Theoretic.
This lecture we consider info-theoretic and comp-theoretic.

A Scenario

1. (5, 9) Secret Sharing.

2. The secret is s. p ∼ s. Zelda picks rand r4, r3, r2, r1 ∈ Zp,
forms the poly f (x) = r4x

4 + r3x
3 + r2x

2 + r1x + s.

3. For 1 ≤ i ≤ 9 Zelda gives Ai f (i).

A2,A4,A7,A8,A9 get together. BUT the do not trust each other!

1. A2 thinks that A7 is a traitor!

2. A7 thinks A4 will confuse them just for the fun of it.

3. A8 and A9 got into a knife fight over who proved that the
muffin problem always has a rational solution. (Used same
knife that was used to cut the muffins in 5

12 : 7
12 ratio.)

4. The list goes on

Hence we need to VERIFY that everyone is telling the truth. This
is called VERIFIABLE secret sharing, or VSS.

A Scenario

1. (5, 9) Secret Sharing.

2. The secret is s. p ∼ s. Zelda picks rand r4, r3, r2, r1 ∈ Zp,
forms the poly f (x) = r4x

4 + r3x
3 + r2x

2 + r1x + s.

3. For 1 ≤ i ≤ 9 Zelda gives Ai f (i).

A2,A4,A7,A8,A9 get together. BUT the do not trust each other!

1. A2 thinks that A7 is a traitor!

2. A7 thinks A4 will confuse them just for the fun of it.

3. A8 and A9 got into a knife fight over who proved that the
muffin problem always has a rational solution. (Used same
knife that was used to cut the muffins in 5

12 : 7
12 ratio.)

4. The list goes on

Hence we need to VERIFY that everyone is telling the truth. This
is called VERIFIABLE secret sharing, or VSS.

A Scenario

1. (5, 9) Secret Sharing.

2. The secret is s. p ∼ s. Zelda picks rand r4, r3, r2, r1 ∈ Zp,
forms the poly f (x) = r4x

4 + r3x
3 + r2x

2 + r1x + s.

3. For 1 ≤ i ≤ 9 Zelda gives Ai f (i).

A2,A4,A7,A8,A9 get together. BUT the do not trust each other!

1. A2 thinks that A7 is a traitor!

2. A7 thinks A4 will confuse them just for the fun of it.

3. A8 and A9 got into a knife fight over who proved that the
muffin problem always has a rational solution. (Used same
knife that was used to cut the muffins in 5

12 : 7
12 ratio.)

4. The list goes on

Hence we need to VERIFY that everyone is telling the truth. This
is called VERIFIABLE secret sharing, or VSS.

First Attempt at (t, L) VSS

1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp

f (x) = rt−1x
t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i), g , g s .
(We think discrete log is HARD so s not revealed.)

Recover: The usual – any group of t can determine the
polynomial f and hence the constant term.

Verify: Once a group has s they compute g s and see if it matches.

If so then they know they have the correct secret.
If no then they know someone is a stinking rotten liar

1. If verify s there may still be two liars who cancel out.

2. If do not agree they do not know who the liar was.

3. Does not serve as a deterrent.

First Attempt at (t, L) VSS

1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp

f (x) = rt−1x
t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i), g , g s .
(We think discrete log is HARD so s not revealed.)

Recover: The usual – any group of t can determine the
polynomial f and hence the constant term.

Verify: Once a group has s they compute g s and see if it matches.
If so then they know they have the correct secret.

If no then they know someone is a stinking rotten liar

1. If verify s there may still be two liars who cancel out.

2. If do not agree they do not know who the liar was.

3. Does not serve as a deterrent.

First Attempt at (t, L) VSS

1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp

f (x) = rt−1x
t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i), g , g s .
(We think discrete log is HARD so s not revealed.)

Recover: The usual – any group of t can determine the
polynomial f and hence the constant term.

Verify: Once a group has s they compute g s and see if it matches.
If so then they know they have the correct secret.
If no then they know someone is a stinking rotten liar

1. If verify s there may still be two liars who cancel out.

2. If do not agree they do not know who the liar was.

3. Does not serve as a deterrent.

First Attempt at (t, L) VSS

1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp

f (x) = rt−1x
t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i), g , g s .
(We think discrete log is HARD so s not revealed.)

Recover: The usual – any group of t can determine the
polynomial f and hence the constant term.

Verify: Once a group has s they compute g s and see if it matches.
If so then they know they have the correct secret.
If no then they know someone is a stinking rotten liar

1. If verify s there may still be two liars who cancel out.

2. If do not agree they do not know who the liar was.

3. Does not serve as a deterrent.

Second Attempt at (t, L) VSS

1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp.
f (x) = rt−1x

t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i).

5. Zelda gives to EVERYONE the values g f (1), . . ., g f (L), g .
(We think discrete log is HARD so f (i) not revealed.)

Recover: The usual – any group of t can blah blah.

Verify: If Ai says f (i) = 17, they can all then check of g17 is what
Zelda said g f (i) is.

If so then they know Ai is truthful.
If not then they know Ai is a stinking rotten liar.

1. PRO: If someone lies they know right away.

2. PRO: Serves as a deterrent.

3. CON: L public strings A LOT!, may need to update.

Second Attempt at (t, L) VSS

1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp.
f (x) = rt−1x

t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i).

5. Zelda gives to EVERYONE the values g f (1), . . ., g f (L), g .
(We think discrete log is HARD so f (i) not revealed.)

Recover: The usual – any group of t can blah blah.

Verify: If Ai says f (i) = 17, they can all then check of g17 is what
Zelda said g f (i) is.
If so then they know Ai is truthful.

If not then they know Ai is a stinking rotten liar.

1. PRO: If someone lies they know right away.

2. PRO: Serves as a deterrent.

3. CON: L public strings A LOT!, may need to update.

Second Attempt at (t, L) VSS

1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp.
f (x) = rt−1x

t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i).

5. Zelda gives to EVERYONE the values g f (1), . . ., g f (L), g .
(We think discrete log is HARD so f (i) not revealed.)

Recover: The usual – any group of t can blah blah.

Verify: If Ai says f (i) = 17, they can all then check of g17 is what
Zelda said g f (i) is.
If so then they know Ai is truthful.
If not then they know Ai is a stinking rotten liar.

1. PRO: If someone lies they know right away.

2. PRO: Serves as a deterrent.

3. CON: L public strings A LOT!, may need to update.

Second Attempt at (t, L) VSS

1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp.
f (x) = rt−1x

t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i).

5. Zelda gives to EVERYONE the values g f (1), . . ., g f (L), g .
(We think discrete log is HARD so f (i) not revealed.)

Recover: The usual – any group of t can blah blah.

Verify: If Ai says f (i) = 17, they can all then check of g17 is what
Zelda said g f (i) is.
If so then they know Ai is truthful.
If not then they know Ai is a stinking rotten liar.

1. PRO: If someone lies they know right away.

2. PRO: Serves as a deterrent.

3. CON: L public strings A LOT!, may need to update.

Third Attempt at (t, L) VSS
1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp,
f (x) = rt−1x

t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i).

5. Zelda gives to EVERYONE the values g r1 , . . . , g rt−1 , g s , g .
(We think discrete log is HARD so ri not revealed.)

Recover: The usual – any group of t can blah blah.
Verify: Ai reveals f (i) = 17. Group computes: g17 and:
(g rt−1)i

t−1 × (g rt−2)i
t−2 × · · · × (g r1)i

1 × (g s)i
0

= g rt−1i t−1+rt−2i t−2+···+r1i1+s = g f (i)

If this is g17 then Ai is truthful.
If not then Ai is dirty stinking liar.

1. PRO: If someone lies they know right away.

2. PRO: Serves as a deterrent.

3. PRO: t public strings, never need to update.

4. CAVEAT: Security – see next slide.

Third Attempt at (t, L) VSS
1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp,
f (x) = rt−1x

t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i).

5. Zelda gives to EVERYONE the values g r1 , . . . , g rt−1 , g s , g .
(We think discrete log is HARD so ri not revealed.)

Recover: The usual – any group of t can blah blah.
Verify: Ai reveals f (i) = 17. Group computes: g17 and:
(g rt−1)i

t−1 × (g rt−2)i
t−2 × · · · × (g r1)i

1 × (g s)i
0

= g rt−1i t−1+rt−2i t−2+···+r1i1+s = g f (i)

If this is g17 then Ai is truthful.

If not then Ai is dirty stinking liar.

1. PRO: If someone lies they know right away.

2. PRO: Serves as a deterrent.

3. PRO: t public strings, never need to update.

4. CAVEAT: Security – see next slide.

Third Attempt at (t, L) VSS
1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp,
f (x) = rt−1x

t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i).

5. Zelda gives to EVERYONE the values g r1 , . . . , g rt−1 , g s , g .
(We think discrete log is HARD so ri not revealed.)

Recover: The usual – any group of t can blah blah.
Verify: Ai reveals f (i) = 17. Group computes: g17 and:
(g rt−1)i

t−1 × (g rt−2)i
t−2 × · · · × (g r1)i

1 × (g s)i
0

= g rt−1i t−1+rt−2i t−2+···+r1i1+s = g f (i)

If this is g17 then Ai is truthful.
If not then Ai is dirty stinking liar.

1. PRO: If someone lies they know right away.

2. PRO: Serves as a deterrent.

3. PRO: t public strings, never need to update.

4. CAVEAT: Security – see next slide.

Third Attempt at (t, L) VSS
1. Secret is s, |s| = n. Zelda finds p ∼ n.

2. Zelda finds a generator g for Zp.

3. Zelda picks rand rt−1, . . . , r1 ∈ Zp,
f (x) = rt−1x

t−1 + · · ·+ r1x + s.

4. For 1 ≤ i ≤ L Zelda gives Ai f (i).

5. Zelda gives to EVERYONE the values g r1 , . . . , g rt−1 , g s , g .
(We think discrete log is HARD so ri not revealed.)

Recover: The usual – any group of t can blah blah.
Verify: Ai reveals f (i) = 17. Group computes: g17 and:
(g rt−1)i

t−1 × (g rt−2)i
t−2 × · · · × (g r1)i

1 × (g s)i
0

= g rt−1i t−1+rt−2i t−2+···+r1i1+s = g f (i)

If this is g17 then Ai is truthful.
If not then Ai is dirty stinking liar.

1. PRO: If someone lies they know right away.

2. PRO: Serves as a deterrent.

3. PRO: t public strings, never need to update.

4. CAVEAT: Security – see next slide.

Security and References

The scheme above for VSS is by Paul Feldman.
A Practical Scheme for non-interactive Verifiable Secret
Sharing
28th Conference on Foundations of Computer Science
(FOCS)
1987
They give proof of security based on zero-knowledge protocols
which are themselves based on blah blah.
Upshot: Pretty good Hardness Assumption.

Electronic Voting Using
Public Key Crypto And

Secret Sharing

Math Needed For Paillier Public Key Encryption

I N = pq where p, q are primes.

I Let m ∈ ZN .

I Let r ∈ Z∗
N picked at random.

I Let c = (1 + N)mrN (mod N2). (NOTE mod N2 not N)

1. Given c , p, q, determining m is EASY. (We omit proof but its
not hard. In Katz’s book.)

2. Given c ,N, determining m is believed to be hard

The Paillier Public Key Encryption

n is a security parameter.

1. Alice picks p, q primes length n, let N = pq, broadcasts N.

2. To send m ∈ ZN Bob picks random r ∈ Z∗
N , broadcasts

(1 + N)mrN (mod N2)

3. As noted in last slide, Alice can decode.

4. As noted in last slide, we think Eve cannot.

Hardness Assumption: The following is hard: given a ∈ ZN2 , is it
an Nth power. (That this is equivalent to breaking the scheme is
not obvious. Not hard – it is in Katz’s book.)

Nice Property of Paillier Encryption

Alice broadcasts N to B1,B2.
B1 broadcasts c1 = ENC (m1) = (1 + N)m1rN1 .
B2 broadcasts c2 = ENC (m2) = (1 + N)m2rN2 .

Important Note:

c1c2 = (1 + N)m1rN1 (1 + N)m2rN2 = (1 + N)m1+m2(r1r2)N

= ENC (m1 + m2)

Scenario: If B1 broadcasts c1, B2 broadcasts c2, and Alice doesn’t
see it, but does see c1c2, then Alice can determine m1 + m2.

Nice Property of Paillier Encryption-II

Alice broadcasts N to B1,B2, . . . ,BS .
B1 broadcasts c1 = ENC (m1).
B2 broadcasts c2 = ENC (m2).
...
BS broadcasts cS = ENC (mS).

Important Note:

c1 · · · cS = (1+N)m1rN1 · · · (1+N)mS rNS = (1+N)m1+···+mS (r1 · · · rS)N

= ENC (m1 + · · ·+ mS)

Scenario: If B1 broadcasts c1, . . ., BS broadcasts cS , and Alice
doesn’t see c1, . . . , cS , but does see c1 · · · cS , then Alice can
determine m1 + · · ·+ mS .

Application to Voting

A and B supervise voting. B1, . . . ,BS vote NO (0) or YES (1).

1. Alice picks p, q primes length n, let N = pq, broadcasts N.

2. Bi votes mi ∈ {0, 1} and prepares ci .

3. Bi send vote to Bob (NOT to Alice).

4. Bob computes c = c1c2 · · · cS .

5. Bob gives c to Alice.

6. Alice can find m1 + · · ·+mS . If < S
2 then NO, otherwise YES.

Is there a problem with this? Discuss

Problem: If S > N2 then sum might overflow and go back to 0.
Solution: Make sure N2 > S . Duh.
Security: Neither Alice nor Bob knows how anyone voted.
Problem: Alice could lie to make The All Night Party win.
Problem: If Alice obtains ci then she could find out how Bi voted.

Application to Voting

A and B supervise voting. B1, . . . ,BS vote NO (0) or YES (1).

1. Alice picks p, q primes length n, let N = pq, broadcasts N.

2. Bi votes mi ∈ {0, 1} and prepares ci .

3. Bi send vote to Bob (NOT to Alice).

4. Bob computes c = c1c2 · · · cS .

5. Bob gives c to Alice.

6. Alice can find m1 + · · ·+mS . If < S
2 then NO, otherwise YES.

Is there a problem with this? Discuss
Problem: If S > N2 then sum might overflow and go back to 0.
Solution: Make sure N2 > S . Duh.
Security: Neither Alice nor Bob knows how anyone voted.

Problem: Alice could lie to make The All Night Party win.
Problem: If Alice obtains ci then she could find out how Bi voted.

Application to Voting

A and B supervise voting. B1, . . . ,BS vote NO (0) or YES (1).

1. Alice picks p, q primes length n, let N = pq, broadcasts N.

2. Bi votes mi ∈ {0, 1} and prepares ci .

3. Bi send vote to Bob (NOT to Alice).

4. Bob computes c = c1c2 · · · cS .

5. Bob gives c to Alice.

6. Alice can find m1 + · · ·+mS . If < S
2 then NO, otherwise YES.

Is there a problem with this? Discuss
Problem: If S > N2 then sum might overflow and go back to 0.
Solution: Make sure N2 > S . Duh.
Security: Neither Alice nor Bob knows how anyone voted.
Problem: Alice could lie to make The All Night Party win.

Problem: If Alice obtains ci then she could find out how Bi voted.

Application to Voting

A and B supervise voting. B1, . . . ,BS vote NO (0) or YES (1).

1. Alice picks p, q primes length n, let N = pq, broadcasts N.

2. Bi votes mi ∈ {0, 1} and prepares ci .

3. Bi send vote to Bob (NOT to Alice).

4. Bob computes c = c1c2 · · · cS .

5. Bob gives c to Alice.

6. Alice can find m1 + · · ·+mS . If < S
2 then NO, otherwise YES.

Is there a problem with this? Discuss
Problem: If S > N2 then sum might overflow and go back to 0.
Solution: Make sure N2 > S . Duh.
Security: Neither Alice nor Bob knows how anyone voted.
Problem: Alice could lie to make The All Night Party win.
Problem: If Alice obtains ci then she could find out how Bi voted.

Application to Voting

Alice and Bob joined by reps from each party Q1, . . . ,Qt .

1. Alice picks p, q primes length n, let N = pq, broadcasts N.

2. Bi votes mi ∈ {0, 1} and prepares ci .

3. Bi sends vote to Bob (NOT Alice, Q1, . . . ,Qt).

4. Bob computes c = c1c2 · · · cS and broadcasts c .

5. Alice: VSS (t, t) – secret p, people Q1, . . . ,Qt .

6. Q1, . . . ,Qt have p, q. They compute DEC (c).

7. Q1, . . . ,Qt agree on the winner.

Security: Neither Alice nor Bob knows how anyone voted.

Security: The outcome is correct since all Q1, . . . ,Qt verify.
Problem: If any Qj obtains ci then Qj could find out how Bi

voted.
Problem: This can be solved. Omitted. In Katz’s book.

Application to Voting

Alice and Bob joined by reps from each party Q1, . . . ,Qt .

1. Alice picks p, q primes length n, let N = pq, broadcasts N.

2. Bi votes mi ∈ {0, 1} and prepares ci .

3. Bi sends vote to Bob (NOT Alice, Q1, . . . ,Qt).

4. Bob computes c = c1c2 · · · cS and broadcasts c .

5. Alice: VSS (t, t) – secret p, people Q1, . . . ,Qt .

6. Q1, . . . ,Qt have p, q. They compute DEC (c).

7. Q1, . . . ,Qt agree on the winner.

Security: Neither Alice nor Bob knows how anyone voted.
Security: The outcome is correct since all Q1, . . . ,Qt verify.

Problem: If any Qj obtains ci then Qj could find out how Bi

voted.
Problem: This can be solved. Omitted. In Katz’s book.

Application to Voting

Alice and Bob joined by reps from each party Q1, . . . ,Qt .

1. Alice picks p, q primes length n, let N = pq, broadcasts N.

2. Bi votes mi ∈ {0, 1} and prepares ci .

3. Bi sends vote to Bob (NOT Alice, Q1, . . . ,Qt).

4. Bob computes c = c1c2 · · · cS and broadcasts c .

5. Alice: VSS (t, t) – secret p, people Q1, . . . ,Qt .

6. Q1, . . . ,Qt have p, q. They compute DEC (c).

7. Q1, . . . ,Qt agree on the winner.

Security: Neither Alice nor Bob knows how anyone voted.
Security: The outcome is correct since all Q1, . . . ,Qt verify.
Problem: If any Qj obtains ci then Qj could find out how Bi

voted.

Problem: This can be solved. Omitted. In Katz’s book.

Application to Voting

Alice and Bob joined by reps from each party Q1, . . . ,Qt .

1. Alice picks p, q primes length n, let N = pq, broadcasts N.

2. Bi votes mi ∈ {0, 1} and prepares ci .

3. Bi sends vote to Bob (NOT Alice, Q1, . . . ,Qt).

4. Bob computes c = c1c2 · · · cS and broadcasts c .

5. Alice: VSS (t, t) – secret p, people Q1, . . . ,Qt .

6. Q1, . . . ,Qt have p, q. They compute DEC (c).

7. Q1, . . . ,Qt agree on the winner.

Security: Neither Alice nor Bob knows how anyone voted.
Security: The outcome is correct since all Q1, . . . ,Qt verify.
Problem: If any Qj obtains ci then Qj could find out how Bi

voted.
Problem: This can be solved. Omitted. In Katz’s book.

For More on Secret Sharing

Google Scholar is a website of all papers (or at least most)
I went there and googled

”Secret Sharing”
How many papers are on it?
VOTE

1. between 1 and 100

2. between 100 and 1000

3. between 1000 and 10,000

4. between 10,000 and 20,000

5. over 20,000

58,000.

For More on Secret Sharing

Google Scholar is a website of all papers (or at least most)
I went there and googled

”Secret Sharing”
How many papers are on it?
VOTE

1. between 1 and 100

2. between 100 and 1000

3. between 1000 and 10,000

4. between 10,000 and 20,000

5. over 20,000

58,000.

