
Stream ciphers



Rivest Cipher 4 (RC4)

I Designed in 1987

I Designed to have good performance in software, rather than
hardware

I No longer considered secure, but still interesting to study

I Simple description; not LFSR-based

I Still encountered in practice

I Interesting attacks



RC4-Init

Init for RC4. Addition is mod 256.

1. 16 byte Key k[0], . . . , k[15]

2. For i = 0 to 255

2.1 S [i ] := i . S is 256 bytes.
2.2 k[i ] := k[i mod 16]. k is now 256 bytes.

3. j := 0

4. For i = 0 to 255

4.1 j := j + S [i ] + k[i ]
4.2 Swap S [i ] and S [j ]

5. i := 0, j := 0, Return (S , i , j).

Note:
1) RC4 deals with bytes, not bits.
2) This is just Init Stage, no output byte yet
3) Can use an IV by prepending IV to Key and using that as Key



RC4-GetBits

Note: Even though called GetBits, actually gets bytes.



RC4

I Not designed to take an IV, but often used with an IV anyway

I E.g. prepend IV to the key



Attack 1: bias in 2nd output byte

I Let St denote permutation after t steps

I Treat S0 as uniform for simplicity

I Say X = s0[1] 6= 2 and S0[2] = 0

I Occurs with probability 1
256

I Then:

I After 1 step, S1[X ] = X , i = 1, j = X

I After 2 steps, j = x , output S2[X ] = 0

I Otherwise,S2[X ] is uniform

I Overall probability of 2nd byte 0 is about 2
256



Attack 1 Continued: bias in 2nd output byte

If uniform then Pr(2nd byte is 0) = 1
256 .

We have seen that Pr(2nd byte is 0) = 2
256 .

Is this a problem?

Yes!

1. If Eve assumes 2nd byte is 0 and uses that to get more
information she will be correct more often then we would like.

2. Exposes general structural problem with RC4.



Attack 1 Continued: bias in 2nd output byte

If uniform then Pr(2nd byte is 0) = 1
256 .

We have seen that Pr(2nd byte is 0) = 2
256 .

Is this a problem? Yes!

1. If Eve assumes 2nd byte is 0 and uses that to get more
information she will be correct more often then we would like.

2. Exposes general structural problem with RC4.



Attack 2: From first 3 bytes can get 4th w/prob 5
100

Details of calculations mentioned here are in online notes.

Example: k[0] = 3, k[1] = 255, k[2] = X (known).

Can show that with prob 5% after init phase:

1. S [0] = 3

2. S [1] = 0

3. S [3] = X + 6 + k[3]

Can show that given the above y1 = S [3] = X + 6 + k[3].

Since Eve knows X can find k[3]

with prob 5
100 .

Caveat: Eve won’t know when she’s right.



Attack 2: From first 3 bytes can get 4th w/prob 5
100

Details of calculations mentioned here are in online notes.

Example: k[0] = 3, k[1] = 255, k[2] = X (known).

Can show that with prob 5% after init phase:

1. S [0] = 3

2. S [1] = 0

3. S [3] = X + 6 + k[3]

Can show that given the above y1 = S [3] = X + 6 + k[3].

Since Eve knows X can find k[3] with prob 5
100 .

Caveat: Eve won’t know when she’s right.



Attack 2: When Is Last Slide Useful to Eve?

Scenario: Alice and Bob use the same key over and over by also a
3-byte IV that they change a lot. Good idea?

NO!
Alice and Bob are using IV [0], IV [1], IV [2], k[0]
Note: Eve knows IV [0], IV [1], IV [2] so effectively does know first
three bytes of a key.
Eve:

1. For each 3-byte IV Alice and Bob use Eve determines if it will
give her > 1

256 prob to deduce fourth byte.

2. If so then use it to deduce fourth byte even though prob isn’t
that high.

3. Keep all of that data! Some byte will end up being much
more likely than the others. Thats the one!



Attack 2: When Is Last Slide Useful to Eve?

Scenario: Alice and Bob use the same key over and over by also a
3-byte IV that they change a lot. Good idea? NO!
Alice and Bob are using IV [0], IV [1], IV [2], k[0]
Note: Eve knows IV [0], IV [1], IV [2] so effectively does know first
three bytes of a key.
Eve:

1. For each 3-byte IV Alice and Bob use Eve determines if it will
give her > 1

256 prob to deduce fourth byte.

2. If so then use it to deduce fourth byte even though prob isn’t
that high.

3. Keep all of that data! Some byte will end up being much
more likely than the others. Thats the one!



Attack 2: Finishing it up

1. Can extend to first t bytes helps get t + 1st byte.

2. Can iterate until get entire key.

3. Takes time, patience, and an Alice and Bob who use the same
key for a while.

4. RC4 no longer considered secure.



My Blog Post Asking if Trivium is used

This Fall I am teaching the senior course in Crypto at UMCP. Its a
nice change of pace for me since REAL people REALLY use this
stuff!

There is one topic that looks really practical but I could not find
on the web if it is or not. A Secure Stream Cipher is (informally) a
way to, given a seed and optionally an Init Vector (IV), generate
bits that look random. Trivium seems to be one such. According
to the Trivium wiki

THEN I HAD STUFF ABOUT TRIVIUM
Is Trivium used?
If so then by whom and for what (for the psuedo 1-time pad?) ?
If not then why not?



First Comment on Blog

Great post on Trivial! Hardware Cube Attack. Metal Education.
Click HERE for great deal on Tuxedos!

My Response
No response. However,

I blocked the comment as it was clearly spam, and not very good
spam at that.

Too bad. They called it a Great post. Oh well.



First Comment on Blog

Great post on Trivial! Hardware Cube Attack. Metal Education.
Click HERE for great deal on Tuxedos!

My Response

No response. However,

I blocked the comment as it was clearly spam, and not very good
spam at that.

Too bad. They called it a Great post. Oh well.



First Comment on Blog

Great post on Trivial! Hardware Cube Attack. Metal Education.
Click HERE for great deal on Tuxedos!

My Response
No response. However,

I blocked the comment as it was clearly spam, and not very good
spam at that.

Too bad. They called it a Great post. Oh well.



Second Comment on Blog

meh squared

My response

I take it you are not impressed with Trivium. Can you say why so
you can enlighten by readers and I can enlighten my class?



Second Comment on Blog

meh squared

My response

I take it you are not impressed with Trivium. Can you say why so
you can enlighten by readers and I can enlighten my class?



Second Comment on Blog

meh squared

My response

I take it you are not impressed with Trivium. Can you say why so
you can enlighten by readers and I can enlighten my class?



Third Comment on Blog

An 80-bit key/IV is not secure enough for many modern uses (like
encryption on the Internet), though I am not sure what exactly
Trivium and other ”lightweight ciphers” consider a threat. Their
primary intended deployment scenarios are IoT and hardware
tokens like auto door locks.

If you are interested in teaching useful (and used) stream ciphers,
you could start with RC4, which was widely used in TLS (i.e.
encrypting a lot Internet traffic) until it was very badly broken.
RC4 exhibits all sorts of interesting weaknesses for teaching, and it
is very simple.

My understanding is that the most widely used stream cipher will
soon likely be Chacha20 (again for TLS). The authentication
mechanism (Poly1305) and other Wegman-Carter-type MACs
involve some algebra and probability that are interesting for
teaching crypto as well.



Salsa20 Stream Cipher (not to be confused with
Nelson’s Salsa Class)

Notation: ⊕ is the usual bit-wise XOR. + is mod 232 addition.
<<< will mean you circular shift bits to the left.
Basic unit: word which is 32 bits.
Basic Operation: On input four words (a, b, c , d), QR(a, b, c , d) is

b := (b ⊕ (b + d)) <<< 7

c := (c ⊕ (a + b)) <<< 9

d := (d ⊕ (b + c)) <<< 13

a := (a⊕ (c + d)) <<< 18

Note: ⊕ and + and <<< are fast! So QR(a, b, c , d) is fast!.

Note: Scrambles up a, b, c , d a lot!.



Salsa20 Stream Cipher-Init

Initially have a 4× 4 array of bytes (8 bits).

Const Key Key Key

Key Const nonce nonce

Pos Pos Const Key

Key Key Key Const
View as 8 words by reading up-down, left-right

Const: Constants that are standardized. Public

Key: Known only to Alice and Bob, used for long time. Private.

Nonce: This IV but can only use a string once. Public

Pos: These will start at 0 and increment every time used. Public.

Note: Nonce: Number-used-once. Public here but not necc



Salsa20 Stream Cipher-Init and other Issues

Initialize for R Rounds:
Even round do QR(a, b, c , d) on the rows,
Every odd round do QR(a, b, c , d) on the columns.

How Many Rounds: Salsa20 sets it to 20. Duh.

Nonce: How to gen rand-looking strings w/o repeats? Discuss

1) Store all prior strings. Too much space.

2) Concat year-month-day-time and a random string. Works!

3) There are other ways.



Salsa20 Stream Cipher-Init and other Issues

Initialize for R Rounds:
Even round do QR(a, b, c , d) on the rows,
Every odd round do QR(a, b, c , d) on the columns.

How Many Rounds: Salsa20 sets it to 20. Duh.

Nonce: How to gen rand-looking strings w/o repeats? Discuss

1) Store all prior strings. Too much space.

2) Concat year-month-day-time and a random string. Works!

3) There are other ways.



Salsa20 Stream Cipher-GetBits

We now have a well mixed 4× 4 array of bytes (8 bits).
Could that just be our random bits? Discuss

No! All steps are reversible. From that array one can work
backwards and find the Key!
Just one more step:

Let the 4× 4 array be x [0], . . . , x [15].

Let the 4× 4 initial array be in[0], . . . , in[15].

For i = 0 to 15 output x [i ] + in[i ].

Security: Salsa20 was introduced in 2005 and has not been broken.
See Wikipedia page for partial attacks (e.g., Salsa8).



Salsa20 Stream Cipher-GetBits

We now have a well mixed 4× 4 array of bytes (8 bits).
Could that just be our random bits? Discuss

No! All steps are reversible. From that array one can work
backwards and find the Key!

Just one more step:

Let the 4× 4 array be x [0], . . . , x [15].

Let the 4× 4 initial array be in[0], . . . , in[15].

For i = 0 to 15 output x [i ] + in[i ].

Security: Salsa20 was introduced in 2005 and has not been broken.
See Wikipedia page for partial attacks (e.g., Salsa8).



Salsa20 Stream Cipher-GetBits

We now have a well mixed 4× 4 array of bytes (8 bits).
Could that just be our random bits? Discuss

No! All steps are reversible. From that array one can work
backwards and find the Key!
Just one more step:

Let the 4× 4 array be x [0], . . . , x [15].

Let the 4× 4 initial array be in[0], . . . , in[15].

For i = 0 to 15 output x [i ] + in[i ].

Security: Salsa20 was introduced in 2005 and has not been broken.
See Wikipedia page for partial attacks (e.g., Salsa8).



How to Design a Good Stream Cipher?

SC’s are designed, used, and not broken

until they are.

Frustrating: Can prove a Stream Cipher is BAD but not GOOD.

Jon Katz:

Absent proofs, the only ways to claim that a stream
cipher is good are to (1) follow known design principles
and (2) make sure known attacks do not work. It helps
lend credibility if they are designed by people who know
what they are doing, not just throwing random stuff
together, but I realize that’s not very scientific.
Trivium, in particular, always struck me as so simple that
it cannot possibly be secure. And yet, there are no
attacks. But I don’t think it has been subject to the
same scrutiny as AES, or even RC4. ChaCha is actually
used, so people care about its security. Hence its security
seems solid. For now.



How to Design a Good Stream Cipher?

SC’s are designed, used, and not broken until they are.

Frustrating: Can prove a Stream Cipher is BAD but not GOOD.

Jon Katz:

Absent proofs, the only ways to claim that a stream
cipher is good are to (1) follow known design principles
and (2) make sure known attacks do not work. It helps
lend credibility if they are designed by people who know
what they are doing, not just throwing random stuff
together, but I realize that’s not very scientific.
Trivium, in particular, always struck me as so simple that
it cannot possibly be secure. And yet, there are no
attacks. But I don’t think it has been subject to the
same scrutiny as AES, or even RC4. ChaCha is actually
used, so people care about its security. Hence its security
seems solid. For now.



How to Design a Good Stream Cipher?

SC’s are designed, used, and not broken until they are.

Frustrating: Can prove a Stream Cipher is BAD but not GOOD.

Jon Katz:

Absent proofs, the only ways to claim that a stream
cipher is good are to (1) follow known design principles
and (2) make sure known attacks do not work. It helps
lend credibility if they are designed by people who know
what they are doing, not just throwing random stuff
together, but I realize that’s not very scientific.
Trivium, in particular, always struck me as so simple that
it cannot possibly be secure. And yet, there are no
attacks. But I don’t think it has been subject to the
same scrutiny as AES, or even RC4. ChaCha is actually
used, so people care about its security. Hence its security
seems solid. For now.



How to Design a Good Stream Cipher?

SC’s are designed, used, and not broken until they are.

Frustrating: Can prove a Stream Cipher is BAD but not GOOD.

Jon Katz:

Absent proofs, the only ways to claim that a stream
cipher is good are to (1) follow known design principles
and (2) make sure known attacks do not work. It helps
lend credibility if they are designed by people who know
what they are doing, not just throwing random stuff
together, but I realize that’s not very scientific.
Trivium, in particular, always struck me as so simple that
it cannot possibly be secure. And yet, there are no
attacks. But I don’t think it has been subject to the
same scrutiny as AES, or even RC4. ChaCha is actually
used, so people care about its security. Hence its security
seems solid. For now.



Good Science and Bad Science

Karl Popper (1930’s): A Scientific Theory should be falsifiable.
Propose experiments that could show it is not true. The longer the
theory survives scrutiny the more likely it is to be true.
1) Classical Mechanics: Good Science. Many experiments
proposed and carried out. Confirmed it until had problems with
fast speeds and small particles.

2) Quantum Mechanics: Good Science. Many experiments
proposed and carried out. So far has not been falsified. Yet.

3) Libertarianism Theory: Bad Science:
Everything bad is the governments fault w/o looking at data.
Global warming require government action, hence its false.

4) Communism: Bad Science:
Wages go down – Capitalists exploiting the worker.
Wages to up – Capitalists placating the worker to avoid revolution.



Good Crypto and Bad Crypto

A Scientific Theory should be falsifiable. Propose experiments that
could show it is not true. The longer the theory survives scrutiny
the more likely it is to be true. For now.

An encryption system should be falsifiable. Propose ways to break
it. The longer it stays unbroken the more likely it is to be
unbreakable. For now. Caveat: let many people try! Kerchoffs’s
law very useful here!

Speculation: Does the NSA let outsiders try to break their
systems? If not then might not be Good Crypto. I really do not
know.

I tried asking them but they wouldn’t tell me!



Good Crypto and Bad Crypto

A Scientific Theory should be falsifiable. Propose experiments that
could show it is not true. The longer the theory survives scrutiny
the more likely it is to be true. For now.

An encryption system should be falsifiable. Propose ways to break
it. The longer it stays unbroken the more likely it is to be
unbreakable. For now. Caveat: let many people try! Kerchoffs’s
law very useful here!

Speculation: Does the NSA let outsiders try to break their
systems? If not then might not be Good Crypto. I really do not
know. I tried asking them but they wouldn’t tell me!


