
Example an Attack on RC4
Exposition by William Gasarch

1 RC4 Initialization

1. 16 byte Key k[0], . . . , k[15]. So each k[i] is an 8-bit number, hence between 0
and 255.

2. For i = 0 to 255

(a) S[i] := i. S is 256 bytes.

(b) k[i] = k[i mod 16]. k is now 256 bytes.

3. For i = 0 to 255

(a) j := j + S[i] + k[i]

(b) Swap S[i] and S[j]

4. i := 0, j := 0, Return (S, i, j).

Lets say the first three bytes of the key were
k[0] = 3
k[1] = 255
k[2] = X (known)
We show that, from the first output bit after the init phase, Eve can learn k[3]

5% of the time.
After the first For loop is done we have the following:

1. For all 0 ≤ i ≤ 255, S[i] = i.

2. For all 0 ≤ i ≤ 255, k[i] is defined. (I don’t think we need this part.)

3. j = 0.

We are now in the second loop.
What happens when i = 0?

i = 0
j := j + S[i] + k[i] = 0 + S[0] + k[0] = 0 + 0 + 3 = 3
We swap S[i] = S[0] and S[j] = S[3] so now have
S[0] = 3
S[3] = 0
For all other i, S[i] = i.

What happens when i = 1?

1



i = 1
j := j + S[i] + k[i] = j + S[1] + k[1] = 3 + 1 + 255 = 3
We swap S[i] = S[1] and S[j] = S[3] so now have
S[0] = 3
S[1] = 0
S[3] = 1
For all other i, S[i] = i.

What happens when i = 2?
i = 2
j := j + S[i] + k[i] = j + S[2] + k[2] = 3 + 2 + X = X + 5
We swap S[i] = S[2] and S[j] = S[X + 5] so now have
S[0] = 3
S[1] = 0
S[2] = X + 5
S[3] = 1
S[X + 5] = 2
For all other i, S[i] = i.

What happens when i = 3?
i = 3
j := j + S[i] + k[i] = j + S[3] + k[3] = (X + 5) + 1 + k[3] = X + 6 + k[3]
We swap S[i] = S[3] and S[j = S[X + 6 + k[3]] so now have
S[0] = 3
S[1] = 0
S[2] = X + 5
S[3] = X + 6 + k[3]
S[X + 5] = 2
S[X + 6 + k[3]] = 3
For all other i, S[i] = i.

What happens when i ≥ 4?
When i ≥ 4 we will be swapping S[i] with S[j]. Note that if in the next 252

iterations j 6= 0, 1, 3 then the values above for S[0], S[1], S[3] will stay the same.
Assuming j is uniform the prob that j 6= 0, 1, 3 is

(253/256)252 = 0.05. So 5% of the time j 6= 0, 1, 3. This may seem small but its
not.

SO, 5% of the time we have:
S[0] = 3
S[1] = 0
S[3] = X + 6 + k[3] (NOTE - we know X)

2



2 GetBits

1. Input (S, i, j) (The (S, i, j) are from init, so i = j = 0.

2. i := i + 1

3. j := j + S[i]

4. Swap S[i] and S[j].

5. t := S[i] + S[j]

6. y := S[t]

7. Return(S, i, j), y

Lets say the S is as at the end of the last section so we have
S[0] = 3
S[1] = 0
S[3] = X + 6 + k[3] (NOTE - we know X)
Then in the first iteration of GetBits the following happens:
i := i + 1, so i = 0 + 1 = 1
j := j + S[i], so j = 0 + S[0] = 0
Swap S[0] and S[1]
t = S[0] + S[1] = 3
y := S[t] = S[3] = X + 6 + k[3].
SO, when see first output byte you have a good notion of what k[3] is.

3 But its only 5%. So What

Assume that the IV is prepended to the key (A terrible idea! This writeup is why its
a terrible idea!). Also assume that the IV is 3 bytes long. So Alice and Bob are using

IV [0]IV [1]IV [2]k[0]

But effectively we know the first three bytes of the key but not the fourth one.
They will use the key for a long time and constantly change IV’s. Some of the

IV’s (like (3, 255, X)) lead to a small prob of getting what we are now calling k[0].
For each init vector that Eve sees she does the following:

1. See if that init vector leads to knowing k[0] with prob more than uniform.

2. If so then record what k[0] might be using the methods above.

After a while she will have A LOT of data. The real k[0] will be obvious after
enough data.

3


