BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Some HW04 Solutions

October 17, 2020

HW04, Problem 2

October 17, 2020

HW04, Problem 2a

Alice and Bob are using the Rail Fence Cipher with 4 rows. Show how Alice encodes

The rail fence cipher.
Show all steps. Give the answer in blocks of 5 all caps for readability. (The last block will be smaller than 5.)

HW04, Problem 2a

Alice and Bob are using the Rail Fence Cipher with 4 rows. Show how Alice encodes

The rail fence cipher.
Show all steps. Give the answer in blocks of 5 all caps for readability. (The last block will be smaller than 5.)
Let's write it on the rails:

HW04, Problem 2a

Alice and Bob are using the Rail Fence Cipher with 4 rows. Show how Alice encodes

The rail fence cipher.
Show all steps. Give the answer in blocks of 5 all caps for readability. (The last block will be smaller than 5.)
Let's write it on the rails:

T					L			C	C		
H			I		F			E		I	

We then get
TLCHI FEIRE AECPE RNH

HW04, Problem 2b

Alice and Bob are using the Rail Fence Cipher with 4 rows. State the rail fence cipher (with 4 rows) in MOD terminology (as I did on the slides).

HW04, Problem 2b

Alice and Bob are using the Rail Fence Cipher with 4 rows. State the rail fence cipher (with 4 rows) in MOD terminology (as I did on the slides).

First list out the letters in positions $\equiv 1(\bmod 6)$.
Second list out the letters in positions $\equiv 0,2(\bmod 6)$.
Third list out the letters in positions $\equiv 3,5(\bmod 6)$.
Fourth list out the letters in positions $\equiv 4(\bmod 6)$.

HW04, Problem 2c

Give the modern view of the 5 -row rail cipher, in terms of mods.

HW04, Problem 2c

Give the modern view of the 5 -row rail cipher, in terms of mods.
This one I leave to you. I might put it on the midterm or final

HW04, Problem 4a

This problem is MOD 13.
Fill in the XXX in the following statement:
The 2×2 matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

has an inverse mod 13 IFF XXX.
(XXX can't be something like the determinant is not a number of Shen-type, it has to be about a, b, c, d.)

HW04, Problem 4a

This problem is MOD 13.
Fill in the XXX in the following statement:
The 2×2 matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

has an inverse mod 13 IFF XXX.
(XXX can't be something like the determinant is not a number of Shen-type, it has to be about a, b, c, d.)

XXX is $a d-b c$ is rel prime to 13 .
Equivalent to
$X X X$ is $a d-b c \not \equiv 0(\bmod 13)$

HW04, Problem 4b

This problem is MOD 13.
Give an example of a 2×2 matrix that DOES have an inverse mod 13 and give the inverse.

HW04, Problem 4b

This problem is MOD 13.
Give an example of a 2×2 matrix that DOES have an inverse mod 13 and give the inverse.

So many work that it would be hard to come up with one that DOESN" T work.

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

$1 \times 4-2 \times 3=4-6=-2 \equiv 11 \not \equiv 0$.
The final answer uses the formula for inverses BUT NOTE THAT you DO NOT us $\frac{1}{11}$ IN THE FINAL ANSWER. You use what it is $\bmod 13$ which is WELL LETS SEE:
$13=11 \times 1+2$
$11=2 \times 5+1$.
$1=11-2 \times 5=11-(13-11) \times 5=11 \times 6-13 \times 5$
$1 \equiv 11 \times 6(\bmod 13)$. So the inverse of $11 \bmod 13$ is 6 .

HW04, Problem 4c

This problem is MOD 13.
Does there exist a 2×2 matrix with all entries DIFFERENT and in $\{1, \ldots, 12\}$ that DOES NOT have an inverse mod 13 ? If YES then give such a matrix, if NO then explain why not.

HW04, Problem 4c

This problem is MOD 13.
Does there exist a 2×2 matrix with all entries DIFFERENT and in $\{1, \ldots, 12\}$ that DOES NOT have an inverse mod 13 ? If YES then give such a matrix, if NO then explain why not.

YES: Here is such a matrix.

$$
\left(\begin{array}{ll}
6 & 3 \\
4 & 2
\end{array}\right)
$$

The determinant is $6 \times 2-3 \times 4=0 \equiv 0(\bmod 13)$.

