
HW 7 CMSC 456. Morally DUE Nov 9

This homework is a little different.
There are FIVE programs here. You will upload your ANSWERS to

be autograded and your programs to be manually looked at. We are only
looking at your programs to make sure you actually wrote them, there are
no secret tests. Thus, this homework should be a free 100.

The pdf you upload will mostly be five code snippets (you can don’t have
to include the whole program, screenshots of relevant function code is fine),
plus a couple of short questions here and there.

You will upload to the autograder a txt file named “answers.txt”. It will
contain five lines, one for each problem. Each line will contain only integers
separated by spaces. You will know what integers to include for each problem
because it will say “IN YOUR ANSWER FILE:” in ALL CAPS.

You can use any non-esoteric language, because the autograder isn’t run-
ning your program. As long as it runs on your machine, and it’s readable,
you are OK.

1



1. (a) Write a program that will, on input a, n, p, output an (mod p).
Make it efficient, so use repeated squaring. Some languages have
this built in, but you are not allowed to use it.

(b) Write a version of your exponentation program that counts the
number of multiplications it does. Find an formula for the number
of multiplications required given a, n, p. (It will be obvious once
you find it, a single sentence is sufficient.) Include this in the
manually-graded pdf.

(c) Using your program compute an (mod 100) for all a ∈ {1, . . . , 99}
and n ∈ {1, . . . , 99}.

(d) Calculate, for each 1 ≤ n ≤ 99 how many a exist such that an ≡ a
(mod 100). Call this number f(n).

(e) Sort your list of f(n) from greatest to least such that f(n1) is the
largest, f(n2) is the second largest, and so on.

IN YOUR ANSWER FILE: include the 198 integers

n1, f(n1), n2, f(n2), . . . , n99, f(n99)

in that order.

2



2. (a) Write a dumb algorithm to test for primality: on input n test if
any number ≤

√
n divides it. This is the naive algorithm.

(b) Use the algorithm on the Oct 26 slide A Primality Testing Algo-
rithm. For your “random” numbers, use R = {2m − 1 | 2 ≤ m ≤
lg n}. This is the fast algorithm.

(c) Run both algorithms on every odd number between 101 and 2000.

(d) IN YOUR ANSWER FILE: List any numbers n such that the two
algorithms differed (if there are any).

(e) Some of these differences are caused of our choice of R, some of
them will differ no matter what R we choose. Try to find better
choices for R. Which of your answers to part (d) are still present?
Write down your answer in the manually graded portion.

(f) Run the fast algorithm on all numbers that are ≤ 1, 000, then ≤
10, 000, then ≤ 100, 000, then ≤ 1, 000, 000. IN YOUR ANSWER
FILE: Tell us how many primes you found with your fast algorithm
for each bound.

(g) Asymptotically, the number of primes ≤ n should be n/ lnn. For
each bound you computed in the last part, how far off is your
answer from your bound? IN YOUR ANSWER FILE: the error,
rounded to the nearest integer, between the number of primes you
found and n/ lnn for each bound.

(h) (5 pts, but open-ended) Conjecture about the error term, i.e. sug-
gest a function for it and give reasoning or graphs to support.

3



3. (a) Write an algorithm that will, given a number n, test if its a SAFE
prime. You MUST use the fast but imperfect algorithm from the
last problem.

(b) Run your algorithm on all numbers that are and ≤ 1, 000, 000. IN
YOUR ANSWER FILE: The number of safe primes found.

(c) What percentage of PRIMES are safe primes? IN YOUR AN-
SWER FILE: round((number of safe primes / # of primes) *
10000)

4



4. (a) Write an program that will, given a number p will TEST if it is
a safe prime and if it IS then find a generator by testing 2,3,4,. . .
until you get one. KEEP TRACK of how many tries it took.
Use the naive prime algorithm for this one, because accuracy is
actually important here.

(b) Bill has a different idea! He will do part (a), but instead of us-
ing 2, 3, 4, . . . , he will test {bp/2c, bp/3c, bp/4c, . . . } in that order.
Code it up and keep track of how many tries this method takes.

(c) Run both algorithms on all numbers between 100 and 10,000 in-
clusive.

IN YOUR ANSWER FILE: Let a1 be the maximum number of
tries for alg 1. Let b1 be the average number of tries per prime for
alg 1, so b1 = (sum total of tries / number of primes). Let a2, b2
be the same for alg 2.

Print a1, round(b1 ∗ 100), a2, round(b2 ∗ 100).

(d) Speculate on which alg is better. (Include this part in your man-
ually graded pdf.)

5



5. Write a function implementing Diffie Hellman.

It should take in a modulus p, a base g, and an unshared secret a or b.

It should print some public data to console, read some data from con-
sole, and come up with a shared secret.

If I run two copies of your program side by side, and send the output
from one to the input of the other and vice versa, they should come up
with the same shared secret.

(a) p = 2221, g = 123.

Alice’s secret is a = 555. Bob publishes gb = 439.

IN YOUR ANSWER FILE: what Alice publishes, the shared se-
cret.

(b) p = 7727, g = 1998

Alice’s secret is a = 911. Bob’s secret (not his published value) is
b = 311.

IN YOUR ANSWER FILE: what Alice publishes, what Bob pub-
lishes, the shared secret.

6


