
HW 9 CMSC 456. Morally DUE Nov 23

1. (30 points) Let p, q, r be distinct primes. Let A = {1, . . . , pqr}.

(a) (7 points) How many numbers in A are multiples of p?

How many numbers in A are multiples of q?

How many numbers in A are multiples of r?

(b) (7 points) How many numbers in A are multiples of pq?

How many numbers in A are multiples of pr?

How many numbers in A are multiples of qr?

(c) (1 points) How many numbers in A are multiples of pqr?

(d) (15 points) Find a formula for φ(pqr) (use the above answers and
the law of inclusion and exclusion.)

1



2. (30 points) Alice and Bob are trying to do RSA but in a slightly differ-
ent way. Alice is going to generate THREE primes of length L, which
they call p, q, r and then use N = pqr. They call this 3-prime-RSA.
And they are proud of it!

(a) (6 points) Fully describe 3-prime-RSA: What Alice does to set it
up, what Bob does to send a message, what Alice does to decode
a message.

(b) (6 points) Alice picks p = 7, q = 11, r = 13, and e = 17. What is
R? What is d? State the actual numbers Alice makes public.

(c) (6 points) Bob wants to send plaintext 19. What does he send as
ciphertext?

(d) (12 points) Assume Eve knows the Pollard-Rho algorithm, but not
the fancier factoring algorithms. Is 3-prime-RSA less secure than
the usual RSA? Explain your answer. (Assume that the length of
N in both is the same.)

2



3. (40 points) This is a programming assignment where you will code up
the Pollard-Rho algorithm. The same programming languages and file
naming conventions from previous homeworks apply.

(a) Write a program that will factor numbers.

The first line of stdin will contain an integer n.

The next n lines will each contain an integer x. For each x, print
the prime factors of x as a space-separated list on its own line.

x may be prime, and have only one factor, or x may have 3 or more
factors. For the sake of this assignment, x is at most 2127 − 1. (If
you really want to use C/C++, the non-standard int128 type is
available on the grade server.)

(b) Run some tests. Generate some random primes. Multiply them
against each other. Factor the result with your algorithm, and
time it. For each of the following cases, collect a bunch of data
points (ideally 100 or more):

• Generate a bunch of primes of diverse orders of magnitude.
Multiply pairs of primes, then factor the product and time
how long it takes. You should have data points where primes
of similar sizes are being multiplied, but also points where one
prime is much bigger than the other.
Plot the time it takes to factorize vs the size of the product,
plot time taken vs the smaller prime, plot time taken vs the
bigger prime. Fit your graph(s) to to what you know about
the runtime of Pollard-Rho.

• Do the same thing, but multiply 3 primes instead of 2 primes.
Use this to conjecture about the runtime for 3 factors.

3


