BILL START THE RECORDING
FILL OUT YOUR COURSE EVALS FOR ALL YOUR COURSES

You got an email asking you to fill out your course evals for all of your courses.

1. Teachers read them and use it to help their teaching. Especially the comments.

2. The teaching evaluation committee reads them to help the teachers with their weak spots. (I was the originator and chair of the Teaching Eval Committee for 12 years so I have seen this in action. I have also been frustrated with courses with not-that-many evals filled out!) Side Note: Nobody should be in any admin position for more than 5 years!

3. These evals are used in the promotion process (Tenure, Senior lecturer, others). It is our hope that because the Teaching Eval Comm helps people become better teachers, there is NO bad teaching so this is not an obstacle for promotion.

4. And you can help us! By filling out the forms!
FILL OUT YOUR COURSE EVALS FOR ALL YOUR COURSES

You got an email asking you to fill out your course evals for all of your courses.

FILL THEM OUT! Three reasons.

1. Teachers reads them and uses it to help their teaching. Especially the comments.

2. The teaching evaluation committee reads them to help the teachers with their weak spots. (I was the originator and the chair of the Teaching Eval Committee for 12 years so I have seen this in action. I have also been frustrated with courses with not-that-many evals filled out! Side Note Nobody should be in any admin position for more than 5 years!)

3. These evals are used in the promotion process (Tenure, Senior lecturer, others). It is our hope that because the Teaching Eval Comm helps people become better teachers, there is NO bad teaching so this is not an obstacle for promotion.

4. And you can help us! By filling out the forms!
FILL OUT YOUR COURSE EVALS FOR ALL YOUR COURSES

You got an email asking you to fill out your course evals for all of your courses.

FILL THEM OUT! Three reasons.

1. Teachers reads them and uses it to help their teaching. Especially the comments.
FILL OUT YOUR COURSE EVALS FOR ALL YOUR COURSES

You got an email asking you to fill out your course evals for all of your courses.

FILL THEM OUT! Three reasons.

1. Teachers reads them and uses it to help their teaching. Especially the comments.
2. The teaching evaluation committee reads them to help the teachers with their weak spots. (I was the originator and the chair of the Teaching Eval Committee for 12 years so I have seen this in action. I have also been frustrated with courses with not-that-many evals filled out!)

Side Note Nobody should be in any admin position for more than 5 years!
FILL OUT YOUR COURSE EVALS FOR ALL YOUR COURSES

You got an email asking you to fill out your course evals for all of your courses.

FILL THEM OUT! Three reasons.

1. Teachers *reads them* and uses it to help their teaching. Especially the comments.

2. The teaching evaluation committee *reads them* to help the teachers with their weak spots. (I was the originator and the chair of the Teaching Eval Committee for 12 years so I have seen this in action. I have also been frustrated with courses with not-that-many evals filled out!)

 Side Note Nobody should be in any admin position for more than 5 years!

3. These evals are used in the promotion process (Tenure, Senior lecturer, others). It is our hope that because the Teaching Eval Comm helps people become better teachers, there is NO bad teaching so this is not an obstacle for promotion.
FILL OUT YOUR COURSE EVALS FOR ALL YOUR COURSES

You got an email asking you to fill out your course evals for all of your courses.

FILL THEM OUT! Three reasons.

1. Teachers reads them and uses it to help their teaching. Especially the comments.

2. The teaching evaluation committee reads them to help the teachers with their weak spots. (I was the originator and the chair of the Teaching Eval Committee for 12 years so I have seen this in action. I have also been frustrated with courses with not-that-many evals filled out!)
 Side Note Nobody should be in any admin position for more than 5 years!

3. These evals are used in the promotion process (Tenure, Senior lecturer, others). It is our hope that because the Teaching Eval Comm helps people become better teachers, there is NO bad teaching so this is not an obstacle for promotion.

4. And you can help us! By filling out the forms!
Threshold Secret Sharing: Length of Shares
Length of Shares

$s = 1111$, length 4. This is 15 in base 10, so we go to smallest prime > 15, namely 17.
Length of Shares

$s = 1111$, length 4. This is 15 in base 10, so we go to smallest prime > 15, namely 17.

We use $p = 17$. $s = 1111$, $|s| = 4$.
Length of Shares

$s = 1111$, length 4. This is 15 in base 10, so we go to smallest prime > 15, namely 17.

We use $p = 17$. $s = 1111$, $|s| = 4$.

Elements of \mathbb{Z}_{17} are represented by strings of length 5.
Length of Shares

$s = 1111$, length 4. This is 15 in base 10, so we go to smallest prime > 15, namely 17.

We use $p = 17$. $s = 1111$, $|s| = 4$.

Elements of \mathbb{Z}_{17} are represented by strings of length 5.

1. Everyone gets share.
Length of Shares

\[s = 1111, \text{ length } 4. \] This is 15 in base 10, so we go to smallest prime \(> 15 \), namely 17.

We use \(p = 17 \). \(s = 1111, |s| = 4. \)

Elements of \(\mathbb{Z}_{17} \) are represented by strings of length 5.

1. Everyone gets share.
2. All shares length 5, even though \(s \) is length 4.
Length of Shares

$s = 1111$, length 4. This is 15 in base 10, so we go to smallest prime > 15, namely 17.

We use $p = 17$. $s = 1111$, $|s| = 4$.

Elements of \mathbb{Z}_{17} are represented by strings of length 5.

1. Everyone gets share.
2. All shares length 5, even though s is length 4.

Can we always get length n? Length $n + 1$?
Length of Shares

$s = 1111$, length 4. This is 15 in base 10, so we go to smallest prime > 15, namely 17.

We use $p = 17$. $s = 1111$, $|s| = 4$.

Elements of \mathbb{Z}_{17} are represented by strings of length 5.

1. Everyone gets share.
2. All shares length 5, even though s is length 4.

Can we always get length n? Length $n + 1$?

We will see that we can always get length $n + 1$.

Length of Shares: \(n \) or \(n + 1 \)

We do secret sharing with \(|s| = n \).
Length of Shares: \(n \) or \(n + 1 \)

We do secret sharing with \(|s| = n \).

1. Using the following theorem we can always to secret sharing with shares of length \(n + 1 \):

\[
\text{For all } x \text{ there is a prime } p \text{ such that } x \leq p \leq 2x.
\]
Length of Shares: \(n \) or \(n + 1 \)

We do secret sharing with \(|s| = n\).

1. Using the following theorem we can always to secret sharing with shares of length \(n + 1 \):
 For all \(x \) there is a prime \(p \) such that \(x \leq p \leq 2x \).
Length of Shares: n or $n + 1$

We do secret sharing with $|s| = n$.

1. Using the following theorem we can always to secret sharing with shares of length $n + 1$:
 For all x there is a prime p such that $x \leq p \leq 2x$.

2. Using the following theorem we can always to secret sharing with shares of length n:
Length of Shares: \(n \) or \(n + 1 \)

We do secret sharing with \(|s| = n \).

1. Using the following theorem we can always to secret sharing with shares of length \(n + 1 \):
 For all \(x \) there is a prime \(p \) such that \(x \leq p \leq 2x \).

2. Using the following theorem we can always to secret sharing with shares of length \(n \):
 For all \(n \) there is a field on \(2^n \) elements (if you do not understand what this means do not worry).

We will just use primes.
Length of Shares: n or $n + 1$

We do secret sharing with $|s| = n$.

1. Using the following theorem we can always to secret sharing with shares of length $n + 1$:
 For all x there is a prime p such that $x \leq p \leq 2x$.

2. Using the following theorem we can always to secret sharing with shares of length n:
 For all n there is a field on 2^n elements (if you do not understand what this means do not worry).

We will just use primes.

Too teach you field theory so you can save 1 bit seems like
Length of Shares: n or $n + 1$

We do secret sharing with $|s| = n$.

1. Using the following theorem we can always to secret sharing with shares of length $n + 1$:
 For all x there is a prime p such that $x \leq p \leq 2x$.

2. Using the following theorem we can always to secret sharing with shares of length n:
 For all n there is a field on 2^n elements (if you do not understand what this means do not worry).

We will just use primes.

Too teach you field theory so you can save 1 bit seems like too much sugar for a cent
Length of Shares: \(n \) or \(n + 1 \)

We do secret sharing with \(|s| = n \).

1. Using the following theorem we can always to secret sharing with shares of length \(n + 1 \):
 For all \(x \) there is a prime \(p \) such that \(x \leq p \leq 2x \).

2. Using the following theorem we can always to secret sharing with shares of length \(n \):
 For all \(n \) there is a field on \(2^n \) elements (if you do not understand what this means do not worry).

We will just use primes.
Too teach you field theory so you can save 1 bit seems like too much sugar for a cent
That is either an old-timey saying or a password from the NSA.
Can Shares be SHORTER than Secret?

1. If we use Fields, we have size-of-shares EQUALS size-of-secret.
2. If we use Mod \(p \) with \(p \) prime, we have size-of-shares EQUALS size-of-secret (+1).

Can Zelda Secret Share with shares SHORTER than the secret?

1. YES and this is known.
2. NO and this is known.
3. YES but needs a hardness assumption.
4. UNKNOWN TO SCIENCE!

VOTE

Answer NO
Can Shares be SHORTER than Secret?

1. If we use Fields, we have size-of-shares EQUALS size-of-secret.
Can Shares be SHORTER than Secret?

1. If we use Fields, we have size-of-shares EQUALS size-of-secret.
2. If we use Mod p with p prime, we have size-of-shares EQUALS size-of-secret (+1).
Can Shares be SHORTER than Secret?

1. If we use Fields, we have size-of-shares EQUALS size-of-secret.
2. If we use Mod p with p prime, we have size-of-shares EQUALS size-of-secret (+1).

Can Zelda Secret Share with shares SHORTER than the secret?

Answer:

NO
Can Shares be SHORTER than Secret?

1. If we use Fields, we have size-of-shares EQUALS size-of-secret.
2. If we use Mod p with p prime, we have size-of-shares EQUALS size-of-secret (+1).

Can Zelda Secret Share with shares SHORTER than the secret?

1. YES and this is known.
Can Shares be SHORTER than Secret?

1. If we use Fields, we have size-of-shares EQUALS size-of-secret.
2. If we use Mod \(p \) with \(p \) prime, we have size-of-shares EQUALS size-of-secret (+1).

Can Zelda Secret Share with shares SHORTER than the secret?

1. YES and this is known.
2. NO and this is known.
Can Shares be SHORTER than Secret?

1. If we use Fields, we have size-of-shares EQUALS size-of-secret.
2. If we use Mod p with p prime, we have size-of-shares
 EQUALS size-of-secret (+1).

Can Zelda Secret Share with shares SHORTER than the secret?

1. YES and this is known.
2. NO and this is known.
3. YES but needs a hardness assumption.
Can Shares be SHORTER than Secret?

1. If we use Fields, we have size-of-shares EQUALS size-of-secret.
2. If we use Mod p with p prime, we have size-of-shares EQUALS size-of-secret (+1).

Can Zelda Secret Share with shares SHORTER than the secret?

1. YES and this is known.
2. NO and this is known.
3. YES but needs a hardness assumption.
4. UNKNOWN TO SCIENCE!
Can Shares be SHORTER than Secret?

1. If we use Fields, we have size-of-shares EQUALS size-of-secret.
2. If we use Mod p with p prime, we have size-of-shares EQUALS size-of-secret (+1).

Can Zelda Secret Share with shares SHORTER than the secret?

1. YES and this is known.
2. NO and this is known.
3. YES but needs a hardness assumption.
4. UNKNOWN TO SCIENCE!

VOTE

Answer

VOTE
Can Shares be SHORTER than Secret?

1. If we use Fields, we have size-of-shares EQUALS size-of-secret.
2. If we use Mod p with p prime, we have size-of-shares EQUALS size-of-secret (+1).

Can Zelda Secret Share with shares SHORTER than the secret?

1. YES and this is known.
2. NO and this is known.
3. YES but needs a hardness assumption.
4. UNKNOWN TO SCIENCE!

VOTE

Answer NO
Example of Why Can’t Have Short Shares

Assume there is a (4, 5) Secret Sharing Scheme where Zelda shares a secret of length 7.
Example of Why Can’t Have Short Shares

Assume there is a (4, 5) Secret Sharing Scheme where Zelda shares a secret of length 7.
(This proof will assume NOTHING about the scheme.)
Example of Why Can’t Have Short Shares

Assume there is a (4, 5) Secret Sharing Scheme where Zelda shares a secret of length 7.
(This proof will assume NOTHING about the scheme.)
The players are A_1, \ldots, A_5
Example of Why Can’t Have Short Shares

Assume there is a $(4, 5)$ Secret Sharing Scheme where Zelda shares a secret of length 7.
(This proof will assume NOTHING about the scheme.)
The players are A_1, \ldots, A_5
Before the protocol begins there are $2^7 = 128$ possibilities for the secret.
Example of Why Can’t Have Short Shares

Assume there is a (4, 5) Secret Sharing Scheme where Zelda shares a secret of length 7.
(This proof will assume NOTHING about the scheme.)
The players are A_1, \ldots, A_5
Before the protocol begins there are $2^7 = 128$ possibilities for the secret.
Assume that A_5 gets a share of length 6. We show that the scheme is NOT info-theoretic secure.
Example of Why Can’t Have Short Shares, Cont

If A_1, A_2, A_3, A_5 got together they learn secret, since it’s a $(4, 5)$ scheme.
Example of Why Can’t Have Short Shares, Cont

If A_1, A_2, A_3, A_5 got together they learn secret, since it’s a $(4, 5)$ scheme.
We show that A_1, A_2, A_3 can learn SOMETHING about the secret.
If A_1, A_2, A_3, A_5 got together they learn secret, since it’s a $(4, 5)$ scheme.

We show that A_1, A_2, A_3 can learn SOMETHING about the secret.

$CAND = \emptyset$. $CAND$ will be set of Candidates for s.
Example of Why Can’t Have Short Shares, Cont

If A_1, A_2, A_3, A_5 got together they learn secret, since it’s a $(4, 5)$ scheme.

We show that A_1, A_2, A_3 can learn SOMETHING about the secret.

$CAND = \emptyset$. $CAND$ will be set of Candidates for s.

For $x \in \{0, 1\}^6$ (go through ALL shares A_5 could have)
Example of Why Can’t Have Short Shares, Cont

If A_1, A_2, A_3, A_5 got together they learn secret, since it’s a $(4, 5)$ scheme.

We show that A_1, A_2, A_3 can learn SOMETHING about the secret.

$CAND = \emptyset$. $CAND$ will be set of Candidates for s.

For $x \in \{0, 1\}^6$ (go through ALL shares A_5 could have)

A_1, A_2, A_3 pretend A_5 has x and deduce candidates secret s'
Example of Why Can’t Have Short Shares, Cont

If A_1, A_2, A_3, A_5 got together they learn secret, since it’s a $(4, 5)$ scheme.

We show that A_1, A_2, A_3 can learn SOMETHING about the secret.

$\text{CAND} = \emptyset$. CAND will be set of Candidates for s.

For $x \in \{0, 1\}^6$ (go through ALL shares A_5 could have)

A_1, A_2, A_3 pretend A_5 has x and deduce candidates secret s'

$\text{CAND} := \text{CAND} \cup \{s'\}$
Example of Why Can’t Have Short Shares, Cont

If A_1, A_2, A_3, A_5 got together they learn secret, since it’s a $(4, 5)$ scheme.

We show that A_1, A_2, A_3 can learn SOMETHING about the secret.

$CAND = \emptyset$. $CAND$ will be set of Candidates for s.

For $x \in \{0, 1\}^6$ (go through ALL shares A_5 could have)

A_1, A_2, A_3 pretend A_5 has x and deduce candidates secret s'

$CAND := CAND \cup \{s'\}$

Secret is in $CAND$. $|CAND| = 2^6 < 2^7$.
Example of Why Can’t Have Short Shares, Cont

If A_1, A_2, A_3, A_5 got together they learn secret, since it’s a $(4, 5)$ scheme.

We show that A_1, A_2, A_3 can learn SOMETHING about the secret.

$$CAND = \emptyset.$$ $CAND$ will be set of Candidates for s.

For $x \in \{0, 1\}^6$ (go through ALL shares A_5 could have)

A_1, A_2, A_3 pretend A_5 has x and deduce candidates secret s'

$$CAND := CAND \cup \{s'\}$$

Secret is in $CAND$. $|CAND| = 2^6 < 2^7$.

So A_1, A_2, A_3 have eliminated many strings from being the secret s.

That is INFORMATION!!!! On the HW you will do more examples and perhaps generalize to show can NEVER have shorter shares.
Example of Why Can’t Have Short Shares, Cont

If A_1, A_2, A_3, A_5 got together they learn secret, since it’s a (4, 5) scheme.

We show that A_1, A_2, A_3 can learn SOMETHING about the secret.

$CAND = \emptyset$. $CAND$ will be set of Candidates for s.

For $x \in \{0, 1\}^6$ (go through ALL shares A_5 could have)

A_1, A_2, A_3 pretend A_5 has x and deduce candidates secret s'

$CAND := CAND \cup \{s'\}$

Secret is in $CAND$. $|CAND| = 2^6 < 2^7$.

So A_1, A_2, A_3 have **eliminated** many strings from being the secret s.

That is INFORMATION!!!!
Example of Why Can’t Have Short Shares, Cont

If A_1, A_2, A_3, A_5 got together they learn secret, since it’s a $(4, 5)$ scheme.

We show that A_1, A_2, A_3 can learn SOMETHING about the secret.

$CAND = \emptyset$. $CAND$ will be set of Candidates for s.

For $x \in \{0, 1\}^6$ (go through ALL shares A_5 could have)

A_1, A_2, A_3 pretend A_5 has x and deduce candidates secret s'

$CAND := CAND \cup \{s'\}$

Secret is in $CAND$. $|CAND| = 2^6 < 2^7$.

So A_1, A_2, A_3 have eliminated many strings from being the secret s.

That is INFORMATION!!!!

On the HW you will do more examples and perhaps generalize to show can NEVER have shorter shares.
Are Shorter Shares Ever Possible?

If we demand info-security then everyone gets a share \(\geq n \).
What if we only demand comp-security?

VOTE
Are Shorter Shares Ever Possible?

If we demand info-security then everyone gets a share $\geq n$. What if we only demand comp-security?

VOTE

1. Can get shares $< \beta n$ with a hardness assumption.
Are Shorter Shares Ever Possible?

If we demand info-security then everyone gets a share $\geq n$. What if we only demand comp-security?

VOTE

1. Can get shares $< \beta n$ with a hardness assumption.
2. Even with hardness assumption REQUIRES shares $\geq n$.
Are Shorter Shares Ever Possible?

If we demand info-security then everyone gets a share $\geq n$. What if we only demand comp-security?

VOTE

1. Can get shares $< \beta n$ with a hardness assumption.
2. Even with hardness assumption REQUIRES shares $\geq n$.

Can get shares $< \beta n$ with a hardness assumption.
Will do that later.
Generalize The Problem

Our problem: Player A_1, \ldots, A_m, secret s.

1. If at least t of them get together they can find s.
2. If at most $t-1$ of them get together they cannot find s.

That is not quite right. Why?

1. If at least t of them get together they can find s.
2. If at most $t-1$ of them get together they cannot find s.

We want to generalize and look at other subsets.

Example

1. If an even number of players get together can find s.
2. If an odd number of players get together can't find s.

Try to find a scheme for this secret sharing problem.

You've Been Punked!

A_1, A_2 CAN find s but A_1, A_2, A_3 CANNOT. Thats Stupid!
Generalize The Problem

Our problem: Player A_1, \ldots, A_m, secret s.

1. If t of them get together they can find s.

2. If $\leq t-1$ of them get together they cannot find s.

We want to generalize and look at other subsets.

Example

1. If an even number of players get together can find s.

2. If an odd number of players get together can't find s.

Try to find a scheme for this secret sharing problem.

You've Been Punked!

A_1, A_2 CAN find s but A_1, A_2, A_3 CANNOT. Thats Stupid!
Generalize The Problem

Our problem: Player A_1, \ldots, A_m, secret s.

1. If t of them get together they can find s.
2. If $t - 1$ of them get together they cannot find s.

That is not quite right. Why?
Generalize The Problem

Our problem: Player A_1, \ldots, A_m, secret s.

1. If t of them get together they can find s.
2. If $t - 1$ of them get together they cannot find s.

That is not quite right. Why?

1. If $\geq t$ of them get together they can find s.

You've Been Punked!

A_1, A_2 CAN find s but A_1, A_2, A_3 CANNOT. Thats Stupid!
Generalize The Problem

Our problem: Player A_1, \ldots, A_m, secret s.

1. If t of them get together they can find s.
2. If $t - 1$ of them get together they cannot find s.

That is not quite right. Why?

1. If $\geq t$ of them get together they can find s.
2. If $\leq t - 1$ of them get together they cannot find s.
Generalize The Problem

Our problem: Player A_1, \ldots, A_m, secret s.

1. If t of them get together they can find s.
2. If $t - 1$ of them get together they cannot find s.

That is not quite right. Why?

1. If $\geq t$ of them get together they can find s.
2. If $\leq t - 1$ of them get together they cannot find s.

We want to generalize and look at other subsets.

Example
Generalize The Problem

Our problem: Player A_1, \ldots, A_m, secret s.

1. If t of them get together they can find s.
2. If $t - 1$ of them get together they cannot find s.

That is not quite right. Why?

1. If $\geq t$ of them get together they can find s.
2. If $\leq t - 1$ of them get together they cannot find s.

We want to generalize and look at other subsets.

Example

1. If an even number of players get together can find s.
2. If an odd number of players get together cannot find s.

Try to find a scheme for this secret sharing problem.

You've Been Punked!

A_1, A_2 CAN find s but A_1, A_2, A_3 CANNOT. That's Stupid!
Generalize The Problem

Our problem: Player A_1, \ldots, A_m, secret s.

1. If t of them get together they can find s.
2. If $t - 1$ of them get together they cannot find s.

That is not quite right. Why?

1. If $\geq t$ of them get together they can find s.
2. If $\leq t - 1$ of them get together they cannot find s.

We want to generalize and look at other subsets.

Example

1. If an even number of players get together can find s.
2. If an odd number of players get together can’t find s.

Try to find a scheme for this secret sharing problem.
Generalize The Problem

Our problem: Player A_1, \ldots, A_m, secret s.

1. If t of them get together they can find s.
2. If $t - 1$ of them get together they cannot find s.

That is not quite right. Why?

1. If $\geq t$ of them get together they can find s.
2. If $\leq t - 1$ of them get together they cannot find s.

We want to generalize and look at other subsets.

Example

1. If an even number of players get together can find s.
2. If an odd number of players get together can’t find s.

Try to find a scheme for this secret sharing problem.

You’ve Been Punked!

A_1, A_2 CAN find s but A_1, A_2, A_3 CANNOT. That’s Stupid!
What is it about Threshold?

1. If $\geq t$ of them get together they can find out secret.
2. If $\leq t - 1$ of them get together they cannot find out secret.

Let's rephrase that so we can generalize:

X is the set of all subsets of $\{A_1, \ldots, A_m\}$ with $\geq t$ players.

1. If $Y \in X$ then the players in Y can find s.
2. If $Y \not\in X$ then the players in Y cannot find s.

This question makes sense. What is it about X that makes it make sense?

X is closed under superset:

If $Y \in X$ and $Y \subseteq Z$ then $Z \in X$.
What is it about Threshold?

1. If $\geq t$ of them get together they can find out secret.
What is it about Threshold?

1. If $\geq t$ of them get together they can find out secret.
2. If $\leq t - 1$ of them get together they cannot find out secret.

Let’s rephrase that so we can generalize:

- X is the set of all subsets of $\{A_1, \ldots, A_m\}$ with $\geq t$ players.
 - If $Y \in X$ then the players in Y can find s.
 - If $Y \not\in X$ then the players in Y cannot find s.

This question makes sense. What is it about X that makes it make sense?

- X is closed under superset: If $Y \in X$ and $Y \subseteq Z$ then $Z \in X$.
What is it about Threshold?

1. If $\geq t$ of them get together they can find out secret.
2. If $\leq t - 1$ of them get together they cannot find out secret.

Let’s rephrase that so we can generalize:

\mathcal{X} is the set of all subsets of \{A$_1$,\ldots, A$_m$\} with $\geq t$ players.
What is it about Threshold?

1. If $\geq t$ of them get together they can find out secret.
2. If $\leq t - 1$ of them get together they cannot find out secret.

Let’s rephrase that so we can generalize:
\mathcal{X} is the set of all subsets of $\{A_1, \ldots, A_m\}$ with $\geq t$ players.
1. If $Y \in \mathcal{X}$ then the players in Y can find s.
What is it about Threshold?

1. If $\geq t$ of them get together they can find out secret.
2. If $\leq t - 1$ of them get together they cannot find out secret.

Let’s rephrase that so we can generalize:
\[\mathcal{X} \] is the set of all subsets of \(\{A_1, \ldots, A_m\} \) with $\geq t$ players.

1. If $Y \in \mathcal{X}$ then the players in Y can find s.
2. If $Y \notin \mathcal{X}$ then the players in Y cannot find s.

This question makes sense. What is it about \mathcal{X} that makes it make sense?
What is it about Threshold?

1. If $\geq t$ of them get together they can find out secret.
2. If $\leq t - 1$ of them get together they cannot find out secret.

Let’s rephrase that so we can generalize:
X is the set of all subsets of $\{A_1, \ldots, A_m\}$ with $\geq t$ players.

1. If $Y \in X$ then the players in Y can find s.
2. If $Y \notin X$ then the players in Y cannot find s.

This question makes sense. What is it about X that makes it make sense?
X is closed under superset:
If $Y \in X$ and $Y \subseteq Z$ then $Z \in X$.
Def An **Access Structure** is a set of subset of \(\{A_1, \ldots, A_m\} \) closed under superset.
Def An **Access Structure** is a set of subset of \(\{A_1, \ldots, A_m\} \) closed under superset.

1. If \(\mathcal{X} \) is an access structure then the following questions make sense:
Access Structures

Def An **Access Structure** is a set of subset of \(\{A_1, \ldots, A_m\} \) closed under superset.

1. If \(\mathcal{X} \) is an access structure then the following questions make sense:
 1.1 Is there a secret sharing scheme for \(\mathcal{X} \)?
Def An Access Structure is a set of subsets of \(\{A_1, \ldots, A_m\}\) closed under superset.

1. If \(\mathcal{X}\) is an access structure then the following questions make sense:
 1.1 Is there a secret sharing scheme for \(\mathcal{X}\)?
 1.2 Is there a secret sharing scheme for \(\mathcal{X}\) where all shares are the same size as the secret?
Access Structures

Def An **Access Structure** is a set of subset of \(\{A_1, \ldots, A_m\} \) closed under superset.

1. If \(\mathcal{X} \) is an access structure then the following questions make sense:
 1.1 Is there a secret sharing scheme for \(\mathcal{X} \)?
 1.2 Is there a secret sharing scheme for \(\mathcal{X} \) where all shares are the same size as the secret?

2. \((t, m)\)-Threshold is an Access structure. The poly method gives a Secret Sharing scheme where all the shares are the same length as the secret.

Def A secret sharing scheme is **ideal** if all shares same size as secret.
DISJOINT-OR of AND: Ideal Sec Sharing Protocol

Want that a group can find the secret if either it has

1. at least 2 of A_1, A_2, A_3, OR
2. at least 4 of B_1, B_2, B_3, B_4, B_5, B_6, B_7.

How can Zelda do this?

1. Zelda does (2, 3) secret sharing with A_1, A_2, A_3.
2. Zelda does (4, 7) secret sharing with B_1, B_2, B_3, B_4, B_5, B_6, B_7.

To generalize this we need a better notation.
DISJOINT-OR of AND: Ideal Sec Sharing Protocol

Want that a group can find the secret if either it has

1. at least 2 of A_1, A_2, A_3, OR

2. at least 4 of $B_1, B_2, B_3, B_4, B_5, B_6, B_7$.

How can Zelda do this?

1. Zelda does (2, 3) secret sharing with A_1, A_2, A_3.

2. Zelda does (4, 7) secret sharing with $B_1, B_2, B_3, B_4, B_5, B_6, B_7$.

To generalize this we need a better notation.
DISJOINT-OR of AND: Ideal Sec Sharing Protocol

Want that a group can find the secret if either it has

1. at least 2 of A_1, A_2, A_3, OR
2. at least 4 of $B_1, B_2, B_3, B_4, B_5, B_6, B_7$.

How can Zelda do this?
DISJOINT-OR of AND: Ideal Sec Sharing Protocol

Want that a group can find the secret if either it has

1. at least 2 of \(A_1, A_2, A_3 \), OR
2. at least 4 of \(B_1, B_2, B_3, B_4, B_5, B_6, B_7 \).

How can Zelda do this?

1. Zelda does (2, 3) secret sharing with \(A_1, A_2, A_3 \).
DISJOINT-OR of AND: Ideal Sec Sharing Protocol

Want that a group can find the secret if either it has
1. at least 2 of A_1, A_2, A_3, OR
2. at least 4 of $B_1, B_2, B_3, B_4, B_5, B_6, B_7$.

How can Zelda do this?
1. Zelda does $(2, 3)$ secret sharing with A_1, A_2, A_3.
2. Zelda does $(4, 7)$ secret sharing with $B_1, B_2, B_3, B_4, B_5, B_6, B_7$.
Want that a group can find the secret if either it has

1. at least 2 of A_1, A_2, A_3, OR
2. at least 4 of $B_1, B_2, B_3, B_4, B_5, B_6, B_7$.

How can Zelda do this?

1. Zelda does $(2, 3)$ secret sharing with A_1, A_2, A_3.
2. Zelda does $(4, 7)$ secret sharing with $B_1, B_2, B_3, B_4, B_5, B_6, B_7$.

To generalize this we need a better notation.
Notation for Threshold

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i’s.
Notation for Threshold

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i's.

Example $TH_A(2, 4)$ is
At least 2 of A_1, A_2, A_3, A_4.
Notation for Threshold

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i’s.

Example $TH_A(2, 4)$ is
At least 2 of A_1, A_2, A_3, A_4.

Example $TH_B(3, 6)$ is
At least 3 of B_1, \ldots, B_6.
Notation for Threshold

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i’s.

Example $TH_A(2, 4)$ is
At least 2 of A_1, A_2, A_3, A_4.

Example $TH_B(3, 6)$ is
At least 3 of B_1, \ldots, B_6.

Note $TH_A(t, m)$ has ideal secret sharing.
Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i's.

Example $TH_A(2, 4)$ is
At least 2 of A_1, A_2, A_3, A_4.

Example $TH_B(3, 6)$ is
At least 3 of B_1, \ldots, B_6.

Note $TH_A(t, m)$ has ideal secret sharing.

Notation $TH_A(t_1, m_1) \lor TH_B(t_2, m_2)$ means that:
Notation for Threshold

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i's.

Example $TH_A(2, 4)$ is
At least 2 of A_1, A_2, A_3, A_4.

Example $TH_B(3, 6)$ is
At least 3 of B_1, \ldots, B_6.

Note $TH_A(t, m)$ has ideal secret sharing.

Notation $TH_A(t_1, m_1) \lor TH_B(t_2, m_2)$ means that:

1. $\geq t_1$ A_1, \ldots, A_{m_1} can learn the secret.
Notation for Threshold

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i's.

Example $TH_A(2, 4)$ is
At least 2 of A_1, A_2, A_3, A_4.

Example $TH_B(3, 6)$ is
At least 3 of B_1, \ldots, B_6.

Note $TH_A(t, m)$ has ideal secret sharing.

Notation $TH_A(t_1, m_1) \lor TH_B(t_2, m_2)$ means that:

1. $\geq t_1$ A_1, \ldots, A_{m_1} can learn the secret.
2. $\geq t_2$ B_1, \ldots, B_{m_2} can learn the secret.
Notation for Threshold

Let $TH_A(t, m)$ be the Boolean Formula that represents at least t out of m of the A_i’s.

Example $TH_A(2, 4)$ is
At least 2 of A_1, A_2, A_3, A_4.

Example $TH_B(3, 6)$ is
At least 3 of B_1, \ldots, B_6.

Note $TH_A(t, m)$ has ideal secret sharing.

Notation $TH_A(t_1, m_1) \lor TH_B(t_2, m_2)$ means that:

1. $\geq t_1$ A_1, \ldots, A_{m_1} can learn the secret.
2. $\geq t_2$ B_1, \ldots, B_{m_2} can learn the secret.
3. No other group can learn the secret (e.g., A_1, A_2, B_1 cannot)
Disjoint OR of $TH_A(t, m)$’s: Ideal Sec Sharing

There is Ideal Secret Sharing for $TH_A(t_1, m_1) \lor \cdots \lor TH_Z(t_{26}, m_{26})$
Disjoint OR of $TH_A(t, m)$’s: Ideal Sec Sharing

There is Ideal Secret Sharing for $TH_A(t_1, m_1) \lor \cdots \lor TH_Z(t_{26}, m_{26})$

1. Zelda and the A_1, \ldots, A_{m_1} do (t_1, m_1) secret sharing.
Disjoint OR of $TH_A(t, m)$’s: Ideal Sec Sharing

There is Ideal Secret Sharing for $TH_A(t_1, m_1) \lor \cdots \lor TH_Z(t_{26}, m_{26})$

1. Zelda and the A_1, \ldots, A_{m_1} do (t_1, m_1) secret sharing.

2. :
Disjoint OR of $TH_A(t, m)$’s: Ideal Sec Sharing

There is Ideal Secret Sharing for $TH_A(t_1, m_1) \lor \cdots \lor TH_Z(t_{26}, m_{26})$

1. Zelda and the A_1, \ldots, A_{m_1} do (t_1, m_1) secret sharing.

2. :

3. Zelda and the $Z_1, \ldots, Z_{m_{26}}$ do (t_{26}, m_{26}) secret sharing.

Note We now have a large set of non-threshold scenarios that have ideal secret sharing.
AND of $TH_A(t, m)$s: An Example

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can. Think about it.
AND of $TH_A(t, m)$s: An Example

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can. Think about it.

1. Zelda has secret s, $|s| = n$.
AND of $TH_A(t, m)$s: An Example

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can. Think about it.

1. Zelda has secret s, $|s| = n$.
2. Zelda generates random $r \in \{0, 1\}^n$.

AND of $TH_A(t, m)$s: An Example

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can. Think about it.

1. Zelda has secret s, $|s| = n$.
2. Zelda generates random $r \in \{0, 1\}^n$.
3. Zelda does $(2, 4)$ secret sharing of r with A_1, A_2, A_3, A_4.

AND of $TH_A(t, m)$s: An Example

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can. Think about it.

1. Zelda has secret s, $|s| = n$.
2. Zelda generates random $r \in \{0, 1\}^n$.
3. Zelda does $(2, 4)$ secret sharing of r with A_1, A_2, A_3, A_4.
4. Zelda does $(4, 7)$ secret sharing of $r \oplus s$ with B_1, \ldots, B_7.
AND of $TH_A(t,m)$s: An Example

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can. Think about it.

1. Zelda has secret s, $|s| = n$.
2. Zelda generates random $r \in \{0, 1\}^n$.
3. Zelda does $(2, 4)$ secret sharing of r with A_1, A_2, A_3, A_4.
4. Zelda does $(4, 7)$ secret sharing of $r \oplus s$ with B_1, \ldots, B_7.
5. If ≥ 2 of A_i’s get together they can find r.
AND of $TH_A(t, m)$s: An Example

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can. Think about it.

1. Zelda has secret s, $|s| = n$.
2. Zelda generates random $r \in \{0, 1\}^n$.
3. Zelda does $(2, 4)$ secret sharing of r with A_1, A_2, A_3, A_4.
4. Zelda does $(4, 7)$ secret sharing of $r \oplus s$ with B_1, \ldots, B_7.
5. If ≥ 2 of A_i’s get together they can find r.
 If ≥ 4 of B_i’s get together they can find $r \oplus s$.
AND of $TH_A(t, m)$s: An Example

We want that if ≥ 2 of A_1, A_2, A_3, A_4 AND ≥ 4 of B_1, \ldots, B_7 get together than they can learn the secret, but no other groups can. Think about it.

1. Zelda has secret s, $|s| = n$.
2. Zelda generates random $r \in \{0, 1\}^n$.
3. Zelda does $(2, 4)$ secret sharing of r with A_1, A_2, A_3, A_4.
4. Zelda does $(4, 7)$ secret sharing of $r \oplus s$ with B_1, \ldots, B_7.
5. If ≥ 2 of A_i’s get together they can find r.
 If ≥ 4 of B_i’s get together they can find $r \oplus s$.
So if they all get together they can find

$$r \oplus (r \oplus s) = s$$
AND of $TH_A(t, m)$s: General

$TH_A(t_1, m_1) \land \cdots \land TH_Z(t_{26}, m_{26})$ can do secret sharing.
AND of $TH_A(t, m)$s: General

$TH_A(t_1, m_1) \land \cdots \land TH_Z(t_{26}, m_{26})$ can do secret sharing.

1. Zelda has secret s, $|s| = n$.
AND of $TH_A(t, m)$s: General

$TH_A(t_1, m_1) \land \cdots \land TH_Z(t_{26}, m_{26})$ can do secret sharing.

1. Zelda has secret s, $|s| = n$.
2. Zelda generates random $r_1, \ldots, r_{25} \in \{0, 1\}^n$.
AND of $TH_A(t, m)$s: General

$TH_A(t_1, m_1) \land \cdots \land TH_Z(t_{26}, m_{26})$ can do secret sharing.

1. Zelda has secret s, $|s| = n$.
2. Zelda generates random $r_1, \ldots, r_{25} \in \{0, 1\}^n$.
3. Zelda does (t_1, m_1) secret sharing of r_1 with A_i’s.
AND of $TH_A(t, m)$s: General

$TH_A(t_1, m_1) \land \cdots \land TH_Z(t_{26}, m_{26})$ can do secret sharing.

1. Zelda has secret s, $|s| = n$.
2. Zelda generates random $r_1, \ldots, r_{25} \in \{0, 1\}^n$.
3. Zelda does (t_1, m_1) secret sharing of r_1 with A_i's.
4. \vdots
AND of $TH_A(t, m)$s: General

$TH_A(t_1, m_1) \land \cdots \land TH_Z(t_{26}, m_{26})$ can do secret sharing.

1. Zelda has secret s, $|s| = n$.
2. Zelda generates random $r_1, \ldots, r_{25} \in \{0, 1\}^n$.
3. Zelda does (t_1, m_1) secret sharing of r_1 with A_i's.
4. :
5. Zelda does (t_{25}, m_{25}) secret sharing of r_{25} with Y_i's.
AND of $TH_A(t, m)$s: General

$TH_A(t_1, m_1) \land \cdots \land TH_Z(t_{26}, m_{26})$ can do secret sharing.

1. Zelda has secret s, $|s| = n$.
2. Zelda generates random $r_1, \ldots, r_{25} \in \{0, 1\}^n$.
3. Zelda does (t_1, m_1) secret sharing of r_1 with A_i's.
4.
5. Zelda does (t_{25}, m_{25}) secret sharing of r_{25} with Y_i's.
6. Zelda does (t_{26}, m_{26}) secret sharing of $r_1 \oplus \cdots \oplus r_{25} \oplus s$ with Z_i's.
AND of $TH_A(t, m)$s: General

$TH_A(t_1, m_1) \land \cdots \land TH_Z(t_{26}, m_{26})$ can do secret sharing.

1. Zelda has secret s, $|s| = n$.
2. Zelda generates random $r_1, \ldots, r_{25} \in \{0, 1\}^n$.
3. Zelda does (t_1, m_1) secret sharing of r_1 with A_i’s.
4.
5. Zelda does (t_{25}, m_{25}) secret sharing of r_{25} with Y_i’s.
6. Zelda does (t_{26}, m_{26}) secret sharing of $r_1 \oplus \cdots \oplus r_{25} \oplus s$ with Z_i’s.
7. If $\geq t_1$ of A_i’s get together they can find r_1. If $\geq t_2$ of B_i’s get together they can find r_2. \cdots If $\geq t_{25}$ of Y_i’s get together they can find r_{25}. If $\geq t_{26}$ of Z_i’s get together they can find $r_1 \oplus \cdots \oplus r_{25} \oplus s$. So if they call get together they can find

$$r_1 \oplus \cdots \oplus r_{25} \oplus (r_1 \oplus \cdots \oplus r_{25} \oplus s) = s$$
Definition A monotone formula is a Boolean formula with no NOT signs.

If you put together what we did with TH and use induction you can prove the following:

Theorem Let X_1, \ldots, X_N each be a threshold $TH_A(t, m)$ but all using DIFFERENT players. Let $F(X_1, \ldots, X_N)$ be a monotone Boolean formula where each X_i appears only once. Then Zelda can do ideal secret sharing where only sets that satisfy $F(X_1, \ldots, X_N)$ can learn the secret.

Routine proof left to the reader. Might be on a HW or the Final.
General Theorem

Definition A monotone formula is a Boolean formula with no NOT signs.

If you put together what we did with TH and use induction you can prove the following:

Theorem Let X_1, \ldots, X_N each be a threshold $TH_A(t, m)$ but all using DIFFERENT players.
Let $F(X_1, \ldots, X_N)$ be a monotone Boolean formula where each X_i appears only once. Then Zelda can do ideal secret sharing where only sets that satisfy $F(X_1, \ldots, X_N)$ can learn the secret.

Routine proof left to the reader. Might be on a HW or the Final.
Access Structures That Admit Ideal Sec. Sharing

1. Threshold Secret sharing: if \(t \) or more get together. We did this.

2. Monotone Boolean Formulas of Threshold where every set of players appears only once. We did this.

3. Monotone Span Programs (Omitted – it's a Matrix Thing) We did not do this and will not.
Access Structures That Admit Ideal Sec. Sharing

1. Threshold Secret sharing: if t or more get together. We did this.
Access Structures That Admit Ideal Sec. Sharing

1. Threshold Secret sharing: if t or more get together. **We did this.**

2. Monotone Boolean Formulas of Threshold where every set of players appears only once. **We did this.**
Access Structures That Admit Ideal Sec. Sharing

1. Threshold Secret sharing: if t or more get together. We did this.
2. Monotone Boolean Formulas of Threshold where every set of players appears only once. We did this.
Access Structures That Admit Ideal Sec. Sharing

1. Threshold Secret sharing: if \(t \) or more get together. **We did this.**

2. Monotone Boolean Formulas of Threshold where every set of players appears only once. **We did this.**

3. Monotone Span Programs (Omitted – it’s a Matrix Thing) **We did not do this and will not.**
Access Structures That Do Not Admit Ideal Sec Sharing

1. $(A_1 \land A_2) \lor (A_2 \land A_3) \lor (A_3 \land A_4)$

2. $(A_1 \land A_2 \land A_3) \lor (A_1 \land A_4) \lor (A_2 \land A_4) \lor (A_3 \lor A_4)$ (Captain and Crew)

A_1, A_2, A_3 is the crew, and A_4 is the captain. Entire crew, or captain and 1 crew, can get shares.

3. $(A_1 \land A_2 \land A_3) \lor (A_1 \land A_4) \lor (A_2 \land A_4) \lor (A_3 \lor A_4)$ (Captain and Rival)

A_1, A_2, A_3 is the crew, A_3 is a rival, A_4 is the captain. Entire crew, or captain and 1 crew who is NOT rival, can get shares.

4. Any access structure that contains any of the above.

In all of the above, all get a share of size 1.

5. And this is optimal.
Access Structures That Do Not Admit Ideal Sec Sharing

1. \((A_1 \land A_2) \lor (A_2 \land A_3) \lor (A_3 \land A_4)\)
Access Structures That Do Not Admit Ideal Sec Sharing

1. \((A_1 \land A_2) \lor (A_2 \land A_3) \lor (A_3 \land A_4)\)
2. \((A_1 \land A_2 \land A_3) \lor (A_1 \land A_4) \lor (A_2 \land A_4) \lor (A_3 \lor A_4)\) (Captain and Crew)\n
\(A_1, A_2, A_3\) is the crew, and \(A_4\) is the captain. Entire crew, or captain and 1 crew, can get \(s\).
Access Structures That Do Not Admit Ideal Sec Sharing

1. \((A_1 \land A_2) \lor (A_2 \land A_3) \lor (A_3 \land A_4)\)
2. \((A_1 \land A_2 \land A_3) \lor (A_1 \land A_4) \lor (A_2 \land A_4) \lor (A_3 \lor A_4)\) (Captain and Crew) \(A_1, A_2, A_3\) is the crew, and \(A_4\) is the captain. Entire crew, or captain and 1 crew, can get \(s\).
3. \((A_1 \land A_2 \land A_3) \lor (A_1 \land A_4) \lor (A_2 \land A_4)\) (Captain and Rival) \(A_1, A_2, A_3\) is the crew, \(A_3\) is a rival, \(A_4\) is the captain. Entire crew, or captain and 1 crew who is NOT rival, can get \(s\).
Access Structures That Do Not Admit Ideal Sec Sharing

1. \((A_1 \land A_2) \lor (A_2 \land A_3) \lor (A_3 \land A_4)\)

2. \((A_1 \land A_2 \land A_3) \lor (A_1 \land A_4) \lor (A_2 \land A_4) \lor (A_3 \lor A_4)\) (Captain and Crew) \(A_1, A_2, A_3\) is the crew, and \(A_4\) is the captain. Entire crew, or captain and 1 crew, can get \(s\).

3. \((A_1 \land A_2 \land A_3) \lor (A_1 \land A_4) \lor (A_2 \land A_4)\) (Captain and Rival) \(A_1, A_2, A_3\) is the crew, \(A_3\) is a rival, \(A_4\) is the captain. Entire crew, or captain and 1 crew who is NOT rival, can get \(s\).

4. Any access structure that contains any of the above.

In all of the above, all get a share of size \(1.5n\) and this is optimal.
Zelda wants to share secret such that:

1. If A_1, A_2, A_3 get together they can get secret.
2. If A_1, A_4 get together they can get secret.
3. If A_2, A_4 get together they can get secret.

By the last slide we know that CANNOT do ideal secret sharing.
Can Zelda Always Secret Share?

Zelda wants to share secret such that:

1. If A_1, A_2, A_3 get together they can get secret.
2. If A_1, A_4 get together they can get secret.
3. If A_2, A_4 get together they can get secret.

By the last slide we know that CANNOT do ideal secret sharing. Can Zelda do secret sharing? VOTE Yes or NO.
Can Zelda Always Secret Share?

Zelda wants to share secret such that:

1. If A_1, A_2, A_3 get together they can get secret.
2. If A_1, A_4 get together they can get secret.
3. If A_2, A_4 get together they can get secret.

By the last slide we know that CANNOT do ideal secret sharing. Can Zelda do secret sharing? VOTE Yes or NO.
YES- but do not use polynomials, use the random string method.
Open Question

Known
Open Question

Known

1. Using Random String Method every Access Structure with \(m \) people has a secret sharing scheme with \(2^m n \) sized shares.
Open Question

Known

1. Using Random String Method every Access Structure with m people has a secret sharing scheme with $2^m n$ sized shares.
2. Threshold and many other Access Structures can do secret sharing with n-sized shares.
Open Question

Known

1. Using Random String Method every Access Structure with m people has a secret sharing scheme with $2^m n$ sized shares.
2. Threshold and many other Access Structures can do secret sharing with n-sized shares.

Open Determine for every access structure the functions $f(n)$ and $g(n)$ such that
Open Question

Known

1. Using Random String Method every Access Structure with \(m \) people has a secret sharing scheme with \(2^m n \) sized shares.
2. Threshold and many other Access Structures can do secret sharing with \(n \)-sized shares.

Open Determine for every access structure the functions \(f(n) \) and \(g(n) \) such that

1. (\(\exists \)) Scheme where everyone gets \(\leq f(n) \) sized share.
Open Question

Known

1. Using Random String Method every Access Structure with m people has a secret sharing scheme with $2^m n$ sized shares.
2. Threshold and many other Access Structures can do secret sharing with n-sized shares.

Open Determine for every access structure the functions $f(n)$ and $g(n)$ such that

1. (\exists) Scheme where everyone gets $\leq f(n)$ sized share.
2. (\forall) Scheme someone gets $\geq g(n)$ sized share.
Open Question

Known

1. Using Random String Method every Access Structure with m people has a secret sharing scheme with $2^m n$ sized shares.
2. Threshold and many other Access Structures can do secret sharing with n-sized shares.

Open Determine for every access structure the functions $f(n)$ and $g(n)$ such that

1. (\exists) Scheme where everyone gets $\leq f(n)$ sized share.
2. (\forall) Scheme someone gets $\geq g(n)$ sized share.
3. $f(n)$ and $g(n)$ are close together.