BILL START RECORDING
Computational Threshold Secret Sharing
Zelda has a secret $s \in \{0, 1\}^n$.

Let $1 \leq t \leq m$. (t, m)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_m such that:

1. If any t get together than they can learn the secret.
2. If any $t - 1$ get together they cannot learn the secret.

We have considered info-theoretic security. This slide packet is about the comp-theoretic security.
Zelda has a secret \(s \in \{0, 1\}^n \).

Def Let \(1 \leq t \leq m \). \((t, m)\)-secret sharing is a way for Zelda to give strings to \(A_1, \ldots, A_m \) such that:

1. If any \(t \) get together than they can learn the secret.
2. If any \(t - 1 \) get together they cannot learn the secret.

We have considered info-theoretic security. This slide packet is about the comp-theoretic security.
Zelda has a secret $s \in \{0, 1\}^n$.

Def Let $1 \leq t \leq m$. (t, m)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_m such that:

1. If any t get together than they can learn the secret.
Zelda has a secret $s \in \{0, 1\}^n$.

Def Let $1 \leq t \leq m$. *(t, m)*-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_m such that:

1. If any t get together than they can learn the secret.
2. If any $t - 1$ get together they cannot learn the secret.
Zelda has a secret $s \in \{0, 1\}^n$.

Def Let $1 \leq t \leq m$. (t, m)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_m such that:

1. If any t get together than they can learn the secret.
2. If any $t - 1$ get together they cannot learn the secret.

Cannot learn the secret We have considered info-theoretic security. This slide packet is about the comp-theoretic security.
Computational Threshold Secret Sharing: Shorter Shares
Info-Theoretic: Shares are $\geq n$

Info-theoretic (t, m)-Secret Sharing.
If A_t has a share of length $n - 1$ then A_1, \ldots, A_{t-1} CAN learn something (so NOT info-theoretic security).
A_1, \ldots, A_{t-1} do the following:
Info-Theoretic: Shares are $\geq n$

Info-theoretic \((t, m)\)-Secret Sharing.
If \(A_t\) has a share of length \(n - 1\) then \(A_1, \ldots, A_{t-1}\) CAN learn something (so NOT info-theoretic security).
\(A_1, \ldots, A_{t-1}\) do the following:

- \(CAND = \emptyset\). \textit{CAND} will be set of Candidates for \(s\).
- For \(x \in \{0, 1\}^{n-1}\) (go through ALL shares \(A_t\) could have)
Info-Theoretic: Shares are $\geq n$

Info-theoretic (t, m)-Secret Sharing.

If A_t has a share of length $n-1$ then A_1, \ldots, A_{t-1} CAN learn something (so NOT info-theoretic security).

A_1, \ldots, A_{t-1} do the following:

\[CAND = \emptyset \]. $CAND$ will be set of Candidates for s.

For $x \in \{0, 1\}^{n-1}$ (go through ALL shares A_t could have)

A_1, \ldots, A_{t-1} pretend A_t has x and deduce candidate secret s'
Info-Theoretic: Shares are $\geq n$

Info-theoretic (t, m)-Secret Sharing.
If A_t has a share of length $n - 1$ then A_1, \ldots, A_{t-1} CAN learn something (so NOT info-theoretic security).
A_1, \ldots, A_{t-1} do the following:

$$CAND = \emptyset.$$
$CAND$ will be set of Candidates for s.

For $x \in \{0, 1\}^{n-1}$ (go through ALL shares A_t could have)

A_1, \ldots, A_{t-1} pretend A_t has x and deduce candidate secret s'

$$CAND := CAND \cup \{s'\}$$
Info-Theoretic: Shares are $\geq n$

Info-theoretic (t, m)-Secret Sharing.
If A_t has a share of length $n - 1$ then A_1, \ldots, A_{t-1} CAN learn something (so NOT info-theoretic security).

A_1, \ldots, A_{t-1} do the following:

$CAND = \emptyset$. $CAND$ will be set of Candidates for s.

For $x \in \{0, 1\}^{n-1}$ (go through ALL shares A_t could have)

A_1, \ldots, A_{t-1} pretend A_t has x and deduce candidate secret s'

$CAND := CAND \cup \{s'\}$

Secret is in $CAND$. $|CAND| = 2^{n-1} < 2^n$. So we have eliminated many strings from being the s.
Are Shorter Shares Ever Possible?

If we demand info-security then everyone gets a share \(\geq n \).
What if we only demand comp-security?
VOTE
Are Shorter Shares Ever Possible?

If we demand info-security then everyone gets a share \(\geq n \). What if we only demand comp-security?

VOTE

1. Can get shares \(< \beta n\) with a hardness assumption.
Are Shorter Shares Ever Possible?

If we demand info-security then everyone gets a share $\geq n$. What if we only demand comp-security?

VOTE

1. Can get shares $< \beta n$ with a hardness assumption.
2. Even with hardness assumption REQUIRES shares $\geq n$.
Are Shorter Shares Ever Possible?

If we \textbf{demand} info-security then \textbf{everyone} gets a share $\geq n$. What if we only \textbf{demand} comp-security?

\textbf{VOTE}

1. Can get shares $< \beta n$ with a hardness assumption.
2. Even with hardness assumption \textbf{REQUIRES} shares $\geq n$.

\textbf{Can get shares} $< \beta n$ \textbf{with a hardness assumption}.

Will do that later.
For plaintext only:
For plaintext only:

1. Shift and Affine is crackable if text is long. Key is shorter than text.
Review of an Aspect of Private Key Crypto

For plaintext only:

1. Shift and Affine is crackable if text is long. Key is shorter than text.
2. Gen Sub is crackable if text is long. Key is shorter than text.
For plaintext only:

1. Shift and Affine is crackable if text is long. Key is shorter than text.
2. Gen Sub is crackable if text is long. Key is shorter than text.
3. Vig is crackable if text is long. Key is shorter than text.
For plaintext only:

1. Shift and Affine is crackable **if text is long**. Key is shorter than text.
2. Gen Sub is crackable **if text is long**. Key is shorter than text.
3. Vig is crackable **if text is long**. Key is shorter than text.
4. 1-time pad is uncrackable *Key is same length as text.*
For plaintext only:

1. Shift and Affine is crackable if text is long. Key is shorter than text.
2. Gen Sub is crackable if text is long. Key is shorter than text.
3. Vig is crackable if text is long. Key is shorter than text.
4. 1-time pad is uncrackable Key is same length as text.

Is there an encryption system where the key is shorter than the text and the system is computationally secure?
Review of an Aspect of Private Key Crypto

For plaintext only:

1. Shift and Affine is crackable if text is long. Key is shorter than text.
2. Gen Sub is crackable if text is long. Key is shorter than text.
3. Vig is crackable if text is long. Key is shorter than text.
4. 1-time pad is uncrackable Key is same length as text.

Is there an encryption system where the key is shorter than the text and the system is computationally secure? Need to define terms first.
Compare Key to Message

Def Let $0 < \alpha < 1$. An \textbf{\textit{\(\alpha\)}}-\textbf{\textit{Symm Enc. System (\(\alpha\)-SES)}} is a three tuple of functions (\textit{GEN}, \textit{ENC}, \textit{DEC}) where
Compare Key to Message

Def Let $0 < \alpha < 1$. An α-Symm Enc. System (α-SES) is a three tuple of functions (GEN, ENC, DEC) where

1. GEN takes n and GENerates $k \in \{0, 1\}^{\alpha n}$.

There is some hardness assumptions which, if true, implies Eve cannot decode the message from plaintext only. Note α-SES encrypts a length n message by a length n ciphertext.
Def Let $0 < \alpha < 1$. An \textbf{\textit{α-Symm Enc. System (α-SES)}} is a three tuple of functions (GEN, ENC, DEC) where

1. GEN takes n and GENerates $k \in \{0, 1\}^{\alpha n}$.
2. ENC takes $k \in \{0, 1\}^{\alpha n}$ and $m \in \{0, 1\}^n$, outputs $c \in \{0, 1\}^n$. (ENC ENCryps m with key k. We denote $ENC_k(m)$.)
Def Let $0 < \alpha < 1$. An α-Symm Enc. System (α-SES) is a three tuple of functions (GEN, ENC, DEC) where

1. GEN takes n and GENerates $k \in \{0, 1\}^{\alpha n}$.

2. ENC takes $k \in \{0, 1\}^{\alpha n}$ and $m \in \{0, 1\}^n$, outputs $c \in \{0, 1\}^n$. (ENC ENCrypts m with key k. We denote $ENC_k(m)$.)

3. DEC takes $k \in \{0, 1\}^{\alpha n}$ and $c \in \{0, 1\}^n$ and outputs $m \in \{0, 1\}^n$ such that $DEC_k(ENC_k(m)) = m$. So DEC DECrysts.
Def Let $0 < \alpha < 1$. An α-Symm Enc. System (α-SES) is a three tuple of functions (GEN, ENC, DEC) where

1. GEN takes n and GENerates $k \in \{0, 1\}^{\alpha n}$.

2. ENC takes $k \in \{0, 1\}^{\alpha n}$ and $m \in \{0, 1\}^n$, outputs $c \in \{0, 1\}^n$. (ENC ENCryps m with key k. We denote $\text{ENC}_k(m)$.)

3. DEC takes $k \in \{0, 1\}^{\alpha n}$ and $c \in \{0, 1\}^n$ and outputs $m \in \{0, 1\}^n$ such that $\text{DEC}_k(\text{ENC}_k(m)) = m$. So DEC DEcryps.

4. There is some hardness assumptions which, if true, implies Eve cannot decode the message from plaintext only.
Define Let $0 < \alpha < 1$. An α-Symm Enc. System (\textit{α-SES}) is a three tuple of functions (Gen, Enc, Dec) where

1. \textit{Gen} takes n and GENerates $k \in \{0, 1\}^{\alpha n}$.
2. \textit{Enc} takes $k \in \{0, 1\}^{\alpha n}$ and $m \in \{0, 1\}^n$, outputs $c \in \{0, 1\}^n$. (Enc ENCrypts m with key k. We denote $Enc_k(m)$.)
3. \textit{Dec} takes $k \in \{0, 1\}^{\alpha n}$ and $c \in \{0, 1\}^n$ and outputs $m \in \{0, 1\}^n$ such that $Dec_k(Enc_k(m)) = m$. So Dec DECrYpts.
4. There is some hardness assumptions which, if true, implies Eve cannot decode the message from plaintext only.

Note α-SES encrypts a length n message by a length n ciphertext.
Psuedorandom Generators

Def (Informal) A a pseudorandom gen maps a short seed to a long sequence that a limited Eve cannot distinguish from random.
Psuedorandom Generators

Def (Informal) A pseudorandom gen maps a short seed to a long sequence that a limited Eve cannot distinguish from random.

Idea Do the one-time-pad but with a pseudorandom sequence.

Discuss
Psuedorandom Generators

Def (Informal) A pseudorandom gen maps a short seed to a long sequence that a limited Eve cannot distinguish from random.

Idea Do the one-time-pad but with a pseudorandom sequence.

Discuss

PROS and **CONS**
Psuedorandom Generators

Def (Informal) A pseudorandom gen maps a short seed to a long sequence that a limited Eve cannot distinguish from random.

Idea Do the one-time-pad but with a pseudorandom sequence.

Discuss

PROS and **CONS**

CON All Powerful Eve can crack it!
Psuedorandom Generators

Def (Informal) A pseudorandom gen maps a short seed to a long sequence that a limited Eve cannot distinguish from random.

Idea Do the one-time-pad but with a pseudorandom sequence.

Discuss

PROS and **CONS**

CON All Powerful Eve can crack it!

PRO Limited Eve cannot crack it!
Psuedorandom Generators

Def (Informal) A pseudorandom gen maps a short seed to a long sequence that a limited Eve cannot distinguish from random.

Idea Do the one-time-pad but with a pseudorandom sequence.

Discuss

PROS and **CONS**

CON All Powerful Eve can crack it!

PRO Limited Eve cannot crack it!

PRO Can Actually use!
BBS Generator

Blum-Blum-Shub psuedo-random Generator. Recall that LSB means Least Significant Bit.
BBS Generator

Blum-Blum-Shub psuedo-random Generator. Recall that LSB means *Least Significant Bit*.

1. **Seed**: p, q primes, $x_0 \in \mathbb{Z}_{N=pq}$. $p, q \equiv 3 \pmod{4}$.
BBS Generator

Blum-Blum-Shub pseudo-random Generator. Recall that LSB means *Least Significant Bit*.

1. **Seed**: \(p, q \) primes, \(x_0 \in \mathbb{Z}_{N=pq} \). \(p, q \equiv 3 \pmod{4} \).
2. **Sequence**:

\[
x_1 = x_0^2 \mod N \quad b_1 = \text{LSB}(x_1)
\]
Blum-Blum-Shub psuedo-random Generator. Recall that LSB means \textit{Least Significant Bit}.

1. Seed: p, q primes, $x_0 \in \mathbb{Z}_{N=pq}$. $p, q \equiv 3 \pmod{4}$.
2. Sequence:

$$
x_1 = x_0^2 \mod N \quad \quad b_1 = \text{LSB}(x_1)
$$

$$
x_2 = x_1^2 \mod N \quad \quad b_2 = \text{LSB}(x_2)
$$

$r = b_1 \cdots b_L$ is pseudo-random.
BBS Generator

Blum-Blum-Shub psuedo-random Generator. Recall that LSB means *Least Significant Bit*.

1. **Seed:** \(p, q \) primes, \(x_0 \in \mathbb{Z}_{N=pq} \). \(p, q \equiv 3 \pmod{4} \).
2. **Sequence:**

\[
\begin{align*}
x_1 &= x_0^2 \pmod{N} & b_1 &= \text{LSB}(x_1) \\
x_2 &= x_1^2 \pmod{N} & b_2 &= \text{LSB}(x_2) \\
\vdots & & \vdots & & \vdots & & \vdots
\end{align*}
\]
Blum-Blum-Shub pseudo-random Generator. Recall that LSB means Least Significant Bit.

1. Seed: \(p, q \) primes, \(x_0 \in \mathbb{Z}_{N=pq} \). \(p, q \equiv 3 \pmod{4} \).

2. Sequence:

\[
\begin{align*}
x_1 &= x_0^2 \mod N & b_1 &= \text{LSB}(x_1) \\
x_2 &= x_1^2 \mod N & b_2 &= \text{LSB}(x_2) \\
\vdots & \vdots & \vdots & \vdots \\
x_L &= x_{L-1}^2 \mod N & b_L &= \text{LSB}(x_L)
\end{align*}
\]

\(r = b_1 \cdots b_L \) is pseudo-random. Known assuming factoring is hard, this is SES. If \(L \) is twice the length of seed, and seed long enough, then secure.
BBS Generator

Blum-Blum-Shub psuedo-random Generator. Recall that LSB means *Least Significant Bit*.

1. Seed: p, q primes, $x_0 \in \mathbb{Z}_{N=pq}$. $p, q \equiv 3 \pmod{4}$.
2. Sequence:

\[
\begin{align*}
 x_1 &= x_0^2 \pmod{N} & b_1 &= \text{LSB}(x_1) \\
 x_2 &= x_1^2 \pmod{N} & b_2 &= \text{LSB}(x_2) \\
 &\vdots & & \vdots \\
 x_L &= x_{L-1}^2 \pmod{N} & b_L &= \text{LSB}(x_L)
\end{align*}
\]

$r = b_1 \cdots b_L$ is pseudo-random.
BBS Generator

Blum-Blum-Shub pseudo-random Generator. Recall that LSB means *Least Significant Bit*.

1. Seed: \(p, q \) primes, \(x_0 \in \mathbb{Z}_{N=pq} \). \(p, q \equiv 3 \pmod{4} \).
2. Sequence:

\[
\begin{align*}
x_1 &= x_0^2 \pmod{N} \quad & b_1 &= \text{LSB}(x_1) \\
x_2 &= x_1^2 \pmod{N} \quad & b_2 &= \text{LSB}(x_2) \\
&\vdots & \vdots & \vdots \\
x_L &= x_{L-1}^2 \pmod{N} \quad & b_L &= \text{LSB}(x_L)
\end{align*}
\]

\(r = b_1 \cdots b_L \) is pseudo-random.

Known Assuming Factoring is hard, this is \(\frac{1}{2} \)-SES. If \(L \) is twice the length of seed, and seed long enough, then secure.
Example of $\frac{1}{2}$-SES

Name of this System BBS-Psuedo 1-time Pad, or BBS-POTP.
Example of $\frac{1}{2}$-SES

Name of this System BBS-Psuedo 1-time Pad, or BBS-POTP.

1. **GEN** $k = (p, q, x_0)$. $|k| = \frac{n}{2}$ (length of k in bits). p, q prime $p \equiv q \equiv 3 \pmod{4}$.
Example of $\frac{1}{2}$-SES

Name of this System BBS-Psuedo 1-time Pad, or BBS-POTP.

1. **GEN** $k = (p, q, x_0)$. $|k| = \frac{n}{2}$ (length of k in bits). p, q prime $p \equiv q \equiv 3 \pmod{4}$.

2. **ENC** Use k to BBS-gen b_1, \ldots, b_n. $m \in \{0, 1\}^n$.

$$ENC_k(m_1, \ldots, m_n) = (m_1 \oplus b_1, \ldots, m_n \oplus b_n).$$

Note Message is twice as long as key, so this is $\frac{1}{2}$-SES.

Note Will not be using this particular SES but have it here as a concrete example.
Example of $\frac{1}{2}$-SES

Name of this System BBS-Psuedo 1-time Pad, or BBS-POTP.

1. **GEN** $k = (p, q, x_0)$. $|k| = \frac{n}{2}$ (length of k in bits). p, q prime $p \equiv q \equiv 3 \pmod{4}$.

2. **ENC** Use k to BBS-gen b_1, \ldots, b_n. $m \in \{0, 1\}^n$.

 $ENC_k(m_1, \ldots, m_n) = (m_1 \oplus b_1, \ldots, m_n \oplus b_n)$.

3. **DEC** Bob can use $k = (p, q, x_0)$ to find b_1, \ldots, b_n, and decode.
Example of $\frac{1}{2}$-SES

Name of this System BBS-Psuedo 1-time Pad, or BBS-POTP.

1. **GEN** $k = (p, q, x_0)$. $|k| = \frac{n}{2}$ (length of k in bits). p, q prime $p \equiv q \equiv 3 \pmod{4}$.

2. **ENC** Use k to BBS-gen b_1, \ldots, b_n. $m \in \{0, 1\}^n$.

 $$ENC_k(m_1, \ldots, m_n) = (m_1 \oplus b_1, \ldots, m_n \oplus b_n).$$

3. **DEC** Bob can use $k = (p, q, x_0)$ to find b_1, \ldots, b_n, and decode.

Known Assume factoring is hard. For large enough n this is secure.
Example of $\frac{1}{2}$-SES

Name of this System BBS-Psuedo 1-time Pad, or BBS-POTP.

1. **GEN** $k = (p, q, x_0)$. $|k| = \frac{n}{2}$ (length of k in bits). p, q prime $p \equiv q \equiv 3 \pmod{4}$.

2. **ENC** Use k to BBS-gen b_1, \ldots, b_n. $m \in \{0, 1\}^n$.

 $$ENC_k(m_1, \ldots, m_n) = (m_1 \oplus b_1, \ldots, m_n \oplus b_n).$$

3. **DEC** Bob can use $k = (p, q, x_0)$ to find b_1, \ldots, b_n, and decode.

Known Assume factoring is hard. For large enough n this is secure.

Note Message is twice as long as key, so this is $\frac{1}{2}$-SES.
Example of $\frac{1}{2}$-SES

Name of this System BBS-Psuedo 1-time Pad, or BBS-POTP.

1. **GEN** $k = (p, q, x_0)$. $|k| = \frac{n}{2}$ (length of k in bits). p, q prime $p \equiv q \equiv 3 \pmod{4}$.

2. **ENC** Use k to BBS-gen b_1, \ldots, b_n. $m \in \{0, 1\}^n$.

\[
ENC_k(m_1, \ldots, m_n) = (m_1 \oplus b_1, \ldots, m_n \oplus b_n).
\]

3. **DEC** Bob can use $k = (p, q, x_0)$ to find b_1, \ldots, b_n, and decode.

Known Assume factoring is hard. For large enough n this is secure.

Note Message is twice as long as key, so this is $\frac{1}{2}$-SES.

Note Will not be using this particular SES but have it here as a concrete example.
Intuition for the Short Shares Protocol

The secret is s, $|s| = n$.
The secret is s, $|s| = n$.

We use an α-SES to get $u = ENC_k(u)$. Note $|k| = \alpha n < n$.
Intuition for the Short Shares Protocol

The secret is s, $|s| = n$.

We use an α-SES to get $u = ENC_k(u)$. Note $|k| = \alpha n < n$.

Players will need shares to figure out:
Intuition for the Short Shares Protocol

The secret is s, $|s| = n$.

We use an α-SES to get $u = ENC_k(u)$. Note $|k| = \alpha n < n$.

Players will need shares to figure out:

1. k. Note $|k| = \alpha n < n$. Do usual way, shares size αn.
Intuition for the Short Shares Protocol

The secret is s, $|s| = n$.

We use an α-SES to get $u = ENC_k(u)$. Note $|k| = \alpha n < n$.

Players will need shares to figure out:

1. k. Note $|k| = \alpha n < n$. Do usual way, shares size αn.
2. u. $|u| = |s|$, darn!
Intuition for the Short Shares Protocol

The secret is \(s \), \(|s| = n \).

We use an \(\alpha \)-SES to get \(u = ENC_k(u) \). Note \(|k| = \alpha n < n \).

Players will need shares to figure out:

1. \(k \). Note \(|k| = \alpha n < n \). Do usual way, shares size \(\alpha n \).

2. \(u \). \(|u| = |s| \), darn! Let \(u = u_{t-1}, \ldots, u_0 \), \(|u_i| = \frac{n}{t} \). Use poly \(u_{t-1}x^{t-1} + \cdots + u_1 t + u_0 \).
Intuition for the Short Shares Protocol

The secret is s, $|s| = n$.

We use an α-SES to get $u = ENC_k(u)$. Note $|k| = \alpha n < n$.

Players will need shares to figure out:

1. k. Note $|k| = \alpha n < n$. Do usual way, shares size αn.
2. u. $|u| = |s|$, darn! Let $u = u_{t-1}, \ldots, u_0$, $|u_i| = \frac{n}{t}$. Use poly $u_{t-1}x^{t-1} + \cdots + u_1t + u_0$.

 How come we could not have done this with original secret s?
The secret is \(s \), \(|s| = n \).

We use an \(\alpha \)-SES to get \(u = ENC_k(u) \). Note \(|k| = \alpha n < n \).

Players will need shares to figure out:

1. \(k \). Note \(|k| = \alpha n < n \). Do usual way, shares size \(\alpha n \).

2. \(u \). \(|u| = |s| \), darn! Let \(u = u_{t-1}, \ldots, u_0, |u_i| = \frac{n}{t} \). Use poly \(u_{t-1}x^{t-1} + \cdots + u_1 t + u_0 \).

 How come we could not have done this with original secret \(s \)?
The secret is s, $|s| = n$.

We use an α-SES to get $u = ENC_k(u)$. Note $|k| = \alpha n < n$.

Players will need shares to figure out:

1. k. Note $|k| = \alpha n < n$. Do usual way, shares size αn.
2. u. $|u| = |s|$, darn! Let $u = u_{t-1}, \ldots, u_0$, $|u_i| = \frac{n}{t}$. Use poly $u_{t-1}x^{t-1} + \cdots + u_1 t + u_0$.

 How come we could not have done this with original secret s?

 If poly is $s_{t-1}x^{t-1} + \cdots + s_1 x + s_0$ then A_1 has $f(1) = s_{t-1} + \cdots + s_0$. Reduces poss for s.

Intuition for the Short Shares Protocol

The secret is s, $|s| = n$.

We use an α-SES to get $u = ENC_k(u)$. Note $|k| = \alpha n < n$.

Players will need shares to figure out:

1. k. Note $|k| = \alpha n < n$. Do usual way, shares size αn.

2. u. $|u| = |s|$, darn! Let $u = u_{t-1}, \ldots, u_0$, $|u_i| = \frac{n}{t}$. Use poly $u_{t-1}x^{t-1} + \cdots + u_1 t + u_0$.

How come we could not have done this with original secret s?

If poly is $s_{t-1}x^{t-1} + \cdots + s_1 x + s_0$ then A_1 has $f(1) = s_{t-1} + \cdots + s_0$. Reduces poss for s.

3. Players get TWO shares, both short, one to find k, one to find u. A set of t of them will recover k and u and hence can find $s = ENC_k(u)$.
Thm Assume there exists an α-SES. Assume that for message of length n, it is secure. Then, for all $1 \leq t \leq m$ there is a (t, m)-scheme for $|s| = n$ where each share is of size $\frac{n}{t} + \alpha n$.
Thm Assume there exists an α-SES. Assume that for message of length n, it is secure. Then, for all $1 \leq t \leq m$ there is a (t, m)-scheme for $|s| = n$ where each share is of size $\frac{n}{t} + \alpha n$.

1. Zelda does $k \leftarrow GEN(n)$. Note $|k| = \alpha n$.

Thm Assume there exists an α-SES. Assume that for message of length n, it is secure. Then, for all $1 \leq t \leq m$ there is a (t, m)-scheme for $|s| = n$ where each share is of size $\frac{n}{t} + \alpha n$.

1. Zelda does $k \leftarrow GEN(n)$. Note $|k| = \alpha n$.
2. $u = ENC_k(s)$. Let $u = u_0 \cdots u_{t-1}$, $|u_i| \sim \frac{n}{t}$.

Short Shares
Thm Assume there exists an α-SES. Assume that for message of length n, it is secure. Then, for all $1 \leq t \leq m$ there is a (t, m)-scheme for $|s| = n$ where each share is of size $\frac{n}{t} + \alpha n$.

1. Zelda does $k \leftarrow GEN(n)$. Note $|k| = \alpha n$.
2. $u = ENC_k(s)$. Let $u = u_0 \cdots u_{t-1}$, $|u_i| \sim \frac{n}{t}$.
3. Let $p > 2^{n/t}$. Zelda forms poly over \mathbb{Z}_p:

 $$f(x) = u_{t-1}x^{t-1} + \cdots + u_1x + u_0$$
Thm Assume there exists an \(\alpha \)-SES. Assume that for message of length \(n \), it is secure. Then, for all \(1 \leq t \leq m \) there is a \((t, m) \)-scheme for \(|s| = n\) where each share is of size \(\frac{n}{t} + \alpha n \).

1. Zelda does \(k \leftarrow GEN(n) \). Note \(|k| = \alpha n\).
2. \(u = ENC_k(s) \). Let \(u = u_0 \cdots u_{t-1}, |u_i| \sim \frac{n}{t} \).
3. Let \(p > 2^{n/t} \). Zelda forms poly over \(\mathbb{Z}_p \):

\[
f(x) = u_{t-1}x^{t-1} + \cdots + u_1x + u_0
\]

4. Let \(q > 2^{\alpha n} \). Zelda forms poly over \(\mathbb{Z}_q \) by choosing \(r_{t-1}, \ldots, r_1 \in \{0, \ldots, q - 1\} \) at random and then:

\[
g(x) = r_{t-1}x^{t-1} + \cdots + r_1x + k \pmod{p}
\]
Thm Assume there exists an α-SES. Assume that for message of length n, it is secure. Then, for all $1 \leq t \leq m$ there is a (t, m)-scheme for $|s| = n$ where each share is of size $\frac{n}{t} + \alpha n$.

1. Zelda does $k \leftarrow \text{GEN}(n)$. Note $|k| = \alpha n$.
2. $u = \text{ENC}_k(s)$. Let $u = u_0 \cdots u_{t-1}$, $|u_i| \sim \frac{n}{t}$.
3. Let $p > 2^{n/t}$. Zelda forms poly over \mathbb{Z}_p:

$$ f(x) = u_{t-1}x^{t-1} + \cdots + u_1x + u_0 $$

4. Let $q > 2^{\alpha n}$. Zelda forms poly over \mathbb{Z}_q by choosing $r_{t-1}, \ldots, r_1 \in \{0, \ldots, q - 1\}$ at random and then:

$$ g(x) = r_{t-1}x^{t-1} + \cdots + r_1x + k \pmod{p} $$

5. Zelda gives $A_i, \ (f(i), g(i))$. Length: $\sim \frac{n}{t} + \alpha n$.
Length and Recovery

Length

1. $f(i) \in \mathbb{Z}_p$ where $p > 2^{n/t}$, so $|f(i)| \sim n/t$.

2. $g(i) \in \mathbb{Z}_q$ where $q > 2^{\alpha n}$, so $|g(i)| \sim \alpha n$.

Recovery

If t get together:

1. Have t points of f, can get u_{t-1}, \ldots, u_0, hence u.

2. $u = ENC_k(s)$. So need k.

3. Have t points of g, can get k.

4. With k and u can get $s = DEC_k(u)$.

If $t - 1$ get together then under (complicated) hardness assumptions, they cannot learn anything.

See next Slide for information about the hardness assumptions.
Length and Recovery

Length

1. $f(i) \in \mathbb{Z}_p$ where $p > 2^{n/t}$, so $|f(i)| \sim \frac{n}{t}$.

Recovery

If t get together:

1. Have t points of f, can get u_{t-1}, \ldots, u_0, hence u.

2. $u = \text{ENC}_k(s)$. So need k.

3. Have t points of g, can get k.

4. With k and u can get $s = \text{DEC}_k(u)$.

If $t-1$ get together then under (complicated) hardness assumptions, they cannot learn anything.

See next Slide for information about the hardness assumptions.
Length and Recovery

Length

1. \(f(i) \in \mathbb{Z}_p \) where \(p > 2^{n/t} \), so \(|f(i)| \sim \frac{n}{t} \).
2. \(g(i) \in \mathbb{Z}_q \) where \(q > 2^{\alpha n} \), so \(|g(i)| \sim \alpha n \).
Length and Recovery

Length

1. $f(i) \in \mathbb{Z}_p$ where $p > 2^{n/t}$, so $|f(i)| \sim \frac{n}{t}$.
2. $g(i) \in \mathbb{Z}_q$ where $q > 2^{\alpha n}$, so $|g(i)| \sim \alpha n$.

Recovery If t get together:

- Have t points of f, can get u_{t-1}, \ldots, u_0, hence u_0.
- $u = \text{ENC}_k(s)$. So need k.
- Have t points of g, can get k.
- With k and u can get $s = \text{DEC}_k(u)$.

If $t-1$ get together then under (complicated) hardness assumptions, they cannot learn anything.

See next Slide for information about the hardness assumptions.
Length and Recovery

Length

1. \(f(i) \in \mathbb{Z}_p \) where \(p > 2^{n/t} \), so \(|f(i)| \sim \frac{n}{t} \).
2. \(g(i) \in \mathbb{Z}_q \) where \(q > 2^{\alpha n} \), so \(|g(i)| \sim \alpha n \).

Recovery If \(t \) get together:

1. Have \(t \) points of \(f \), can get \(u_{t-1}, \ldots, u_0 \), hence \(u \).
Length and Recovery

Length

1. \(f(i) \in \mathbb{Z}_p \) where \(p > 2^{n/t} \), so \(|f(i)| \sim \frac{n}{t} \).
2. \(g(i) \in \mathbb{Z}_q \) where \(q > 2^{\alpha n} \), so \(|g(i)| \sim \alpha n \).

Recovery If \(t \) get together:

1. Have \(t \) points of \(f \), can get \(u_{t-1}, \ldots, u_0 \), hence \(u \).
2. \(u = ENC_k(s) \). So need \(k \).
Length and Recovery

Length
1. \(f(i) \in \mathbb{Z}_p \) where \(p > 2^{n/t} \), so \(|f(i)| \sim \frac{n}{t} \).
2. \(g(i) \in \mathbb{Z}_q \) where \(q > 2^{\alpha n} \), so \(|g(i)| \sim \alpha n \).

Recovery If \(t \) get together:
1. Have \(t \) points of \(f \), can get \(u_{t-1}, \ldots, u_0 \), hence \(u \).
2. \(u = ENC_k(s) \). So need \(k \).
3. Have \(t \) points of \(g \), can get \(k \).
Length and Recovery

Length

1. \(f(i) \in \mathbb{Z}_p \) where \(p > 2^{n/t} \), so \(|f(i)| \sim \frac{n}{t} \).
2. \(g(i) \in \mathbb{Z}_q \) where \(q > 2^{\alpha n} \), so \(|g(i)| \sim \alpha n \).

Recovery If \(t \) get together:

1. Have \(t \) points of \(f \), can get \(u_{t-1}, \ldots, u_0 \), hence \(u \).
2. \(u = ENC_k(s) \). So need \(k \).
3. Have \(t \) points of \(g \), can get \(k \).
4. With \(k \) and \(u \) can get \(s = DEC_k(u) \).
Length and Recovery

Length

1. \(f(i) \in \mathbb{Z}_p \) where \(p > 2^{n/t} \), so \(|f(i)| \sim \frac{n}{t} \).
2. \(g(i) \in \mathbb{Z}_q \) where \(q > 2^\alpha n \), so \(|g(i)| \sim \alpha n \).

Recovery If \(t \) get together:

1. Have \(t \) points of \(f \), can get \(u_{t-1}, \ldots, u_0 \), hence \(u \).
2. \(u = ENC_k(s) \). So need \(k \).
3. Have \(t \) points of \(g \), can get \(k \).
4. With \(k \) and \(u \) can get \(s = DEC_k(u) \).

If \(t - 1 \) get together then under (complicated) hardness assumptions, they cannot learn anything.
Length and Recovery

Length

1. \(f(i) \in \mathbb{Z}_p \) where \(p > 2^{n/t} \), so \(|f(i)| \sim \frac{n}{t} \).
2. \(g(i) \in \mathbb{Z}_q \) where \(q > 2^{\alpha n} \), so \(|g(i)| \sim \alpha n \).

Recovery If \(t \) get together:

1. Have \(t \) points of \(f \), can get \(u_{t-1}, \ldots, u_0 \), hence \(u \).
2. \(u = ENC_k(s) \). So need \(k \).
3. Have \(t \) points of \(g \), can get \(k \).
4. With \(k \) and \(u \) can get \(s = DEC_k(u) \).

If \(t - 1 \) get together then under (complicated) hardness assumptions, they cannot learn anything.
See next Slide for information about the hardness assumptions.
SONG BREAK

https://nerdist.com/article/star-wars-meets-the-beatles-sgt-pepper-in-the-best-parody-
The scheme I showed you is due to Hugo Krawczyk, *Secret Sharing Made Short*, *Advances in Crypto – CRYPTO 1993 Lecture notes in computer science 773, 1993*

However, the proof of security was not quite right.
The scheme I showed you is due to Hugo Krawczyk, *Secret Sharing Made Short*, *Advances in Crypto – CRYPTO 1993 Lecture notes in computer science 773, 1993*
However, the proof of security was not quite right.

Mihir Bellar and Phillip Rogaway wrote a paper that proved Krawczyk’s protocol secure by adding a condition to the α-SES. We omit since its complicated.
Robust Computational Secret Sharing and a Unified Account of Classical Secret Sharing Goals, *Cryptology eprint 2006-449, 2006*
https://dl.acm.org/doi/10.1145/1315245.1315268
Can we do better than $\frac{n}{t} + \alpha n$?

Ill Formed Question Can we do better than $\frac{n}{t} + \alpha n$?
The question is not quite right – if we have a smaller α can do better.
Can we do better than $\frac{n}{t} + \alpha n$?

III Formed Question Can we do better than $\frac{n}{t} + \alpha n$?
The question is not quite right – if we have a smaller α can do better.

Better Question Assume there is an α-SES. Is the following true:

For all $0 < \beta < 1$ there exists an (t,m) secret sharing scheme where everyone gets $\frac{n}{t} + \beta n$.

Discuss
Can we do better than $\frac{n}{t} + \alpha n$?

Ill Formed Question Can we do better than $\frac{n}{t} + \alpha n$?
The question is not quite right – if we have a smaller α can do better.

Better Question Assume there is an α-SES. Is the following true: For all $0 < \beta < 1$ there exists an (t, m) secret sharing scheme where everyone gets $\frac{n}{t} + \beta n$.

Discuss
Can be done by iterating the above construction. Might be HW or Exam.
Breaking the $\frac{n}{t}$ Barrier!

(2, 2): A, B share the secret s, $|s| = n$. Computational Secret Sharing, so can make a hardness assumption.
Breaking the $\frac{n}{t}$ Barrier!

(2, 2): A, B share the secret s, $|s| = n$. Computational Secret Sharing, so can make a hardness assumption.

Question Is there a (2, 2) secret sharing scheme where A and B both get a share $\leq \frac{n}{3}$?

Discuss. Vote!
Breaking the $\frac{n}{t}$ Barrier!

(2, 2): A, B share the secret s, $|s| = n$. Computational Secret Sharing, so can make a hardness assumption.

Question Is there a (2, 2) secret sharing scheme where A and B both get a share $\leq \frac{n}{3}$?

Discuss. Vote!

1. YES! There is such a Scheme.
(2, 2): A, B share the secret s, $|s| = n$.
Computational Secret Sharing, so can make a hardness assumption.

Question Is there a (2, 2) secret sharing scheme where A and B
both get a share $\leq \frac{n}{3}$?

Discuss. Vote!

1. YES! There is such a Scheme.
2. NO! We can prove there is NO such scheme.
(2, 2): A, B share the secret s, |s| = n. Computational Secret Sharing, so can make a hardness assumption.

Question Is there a (2, 2) secret sharing scheme where A and B both get a share ≤ \(\frac{n}{3} \)?

Discuss. Vote!

1. YES! There is such a Scheme.
2. NO! We can prove there is NO such scheme.
3. PUNKED! Bill will shows us a scheme that looks like it works but he’ll be PUNKING US!
(2, 2): A, B share the secret s, $|s| = n$. Computational Secret Sharing, so can make a hardness assumption.

Question Is there a (2, 2) secret sharing scheme where A and B both get a share $\leq \frac{n}{3}$?

Discuss. Vote!

1. YES! There is such a Scheme.
2. NO! We can prove there is NO such scheme.
3. PUNKED! Bill will shows us a scheme that looks like it works but he’ll be PUNKING US!
4. Unknown to science!
Breaking the $\frac{n}{t}$ Barrier!

(2, 2): A, B share the secret s, $|s| = n$. Computational Secret Sharing, so can make a hardness assumption.

Question Is there a (2, 2) secret sharing scheme where A and B both get a share $\leq \frac{n}{3}$?

Discuss. Vote!

1. YES! There is such a Scheme.
2. NO! We can prove there is NO such scheme.
3. PUNKED! Bill will shows us a scheme that looks like it works but he’ll be PUNKING US!
4. Unknown to science!

NO! We can prove there is NO such scheme.
Can’t Break the $\frac{n}{t}$ Barrier!

Theorem There is no $(2, 2)$-scheme with shares $\frac{n}{3}$.

Proof Assume there is.
Map $s \in \{0, 1\}^n$ to the ordered pair (A’s share, B’s share)
2^n elements in the domain.
$2^{n/3} \times 2^{n/3} = 2^{2n/3}$ elements in the co-domain.
Can’t Break the $\frac{n}{t}$ Barrier!

Theorem There is no $(2, 2)$-scheme with shares $\frac{n}{3}$.

Proof Assume there is.
Map $s \in \{0, 1\}^n$ to the ordered pair (A’s share, B’s share)
2^n elements in the domain.

$2^{n/3} \times 2^{n/3} = 2^{2n/3}$ elements in the co-domain.

Hence exists $s, s' \in \{0, 1\}^n$ that map to same (a, b).
If A gets a, and B gets b, will not decode uniquely into one secret.
Theorem There is no \((2, 2)\)-scheme with shares \(\frac{n}{3}\).

Proof Assume there is.

Map \(s \in \{0, 1\}^n\) to the ordered pair \((A’s\ share, B’s\ share)\)

\(2^n\) elements in the domain.

\(2^{n/3} \times 2^{n/3} = 2^{2n/3}\) elements in the co-domain.

Hence exists \(s, s' \in \{0, 1\}^n\) that map to same \((a, b)\).

If \(A\) gets \(a\), and \(B\) gets \(b\), will not decode uniquely into one secret.

Contradiction!

This Generalizes. Might be on HW or Exam
Computational Threshold Secret Sharing: Verifiable S.S.
A Scenario

2. The secret is s. Zelda picks random r_4, r_3, r_2, r_1 and forms poly over \mathbb{Z}_p: $f(x) = r_4x^4 + r_3x^3 + r_2x^2 + r_1x + s \pmod{p}$.
3. For $1 \leq i \leq 9$ Zelda gives A_i the element $f(i)$.

A_2, A_4, A_7, A_8, A_9 get together. BUT they do not trust each other!

1. A_2 thinks that A_7 is a traitor!
2. A_7 thinks A_4 will confuse them just for the fun of it.
3. A_8 and A_9 got into a knife fight over who proved that the muffin problem always has a rational solution. They use the knifes that were used to cut muffins.

4. The list goes on.

Hence we need to VERIFY that everyone is telling the truth. This is called VERIFIABLE secret sharing, or VSS.

In all protocols, Zelda broadcasts the prime p and the length n.

We omit this step to save space on the slides.
A Scenario

1. (5, 9) Secret Sharing.
A Scenario

1. (5, 9) Secret Sharing.
2. The secret is s. $p > 2^s$. Zelda picks random r_4, r_3, r_2, r_1 and forms poly over \mathbb{Z}_p: $f(x) = r_4x^4 + r_3x^3 + r_2x^2 + r_1x + s$ (mod p).
A Scenario

1. (5, 9) Secret Sharing.
2. The secret is s. $p > 2^s$. Zelda picks random r_4, r_3, r_2, r_1 and forms poly over \mathbb{Z}_p: $f(x) = r_4x^4 + r_3x^3 + r_2x^2 + r_1x + s$ (mod p).
3. For $1 \leq i \leq 9$ Zelda gives A_i the element $f(i)$.
A Scenario

1. (5, 9) Secret Sharing.
2. The secret is s. $p > 2^5$. Zelda picks random r_4, r_3, r_2, r_1 and forms poly over \mathbb{Z}_p: $f(x) = r_4x^4 + r_3x^3 + r_2x^2 + r_1x + s$ (mod p).
3. For $1 \leq i \leq 9$ Zelda gives A_i the element $f(i)$.

A_2, A_4, A_7, A_8, A_9 get together. BUT they do not trust each other!
A Scenario

1. (5, 9) Secret Sharing.
2. The secret is s. $p > 2^5$. Zelda picks random r_4, r_3, r_2, r_1 and forms poly over \mathbb{Z}_p: $f(x) = r_4x^4 + r_3x^3 + r_2x^2 + r_1x + s$ (mod p).
3. For $1 \leq i \leq 9$ Zelda gives A_i the element $f(i)$.

A_2, A_4, A_7, A_8, A_9 get together. BUT they do not trust each other!

1. A_2 thinks that A_7 is a traitor!
A Scenario

1. (5, 9) Secret Sharing.
2. The secret is s. $p > 2^5$. Zelda picks random r_4, r_3, r_2, r_1 and forms poly over \mathbb{Z}_p: $f(x) = r_4x^4 + r_3x^3 + r_2x^2 + r_1x + s$ (mod p).
3. For $1 \leq i \leq 9$ Zelda gives A_i the element $f(i)$.

A_2, A_4, A_7, A_8, A_9 get together. BUT they do not trust each other!

1. A_2 thinks that A_7 is a traitor!
2. A_7 thinks A_4 will confuse them just for the fun of it.
A Scenario

1. (5, 9) Secret Sharing.
2. The secret is s. $p > 2^5$. Zelda picks random r_4, r_3, r_2, r_1 and forms poly over \mathbb{Z}_p: $f(x) = r_4x^4 + r_3x^3 + r_2x^2 + r_1x + s \pmod{p}$.
3. For $1 \leq i \leq 9$ Zelda gives A_i the element $f(i)$.

A_2, A_4, A_7, A_8, A_9 get together. BUT they do not trust each other!

1. A_2 thinks that A_7 is a traitor!
2. A_7 thinks A_4 will confuse them just for the fun of it.
3. A_8 and A_9 got into a knife fight over who proved that the muffin problem always has a rational solution. They use the knifes that were used to cut muffins.
A Scenario

1. (5, 9) Secret Sharing.
2. The secret is s. $p > 2^5$. Zelda picks random r_4, r_3, r_2, r_1 and forms poly over \mathbb{Z}_p: $f(x) = r_4x^4 + r_3x^3 + r_2x^2 + r_1x + s \pmod{p}$.
3. For $1 \leq i \leq 9$ Zelda gives A_i the element $f(i)$.

A_2, A_4, A_7, A_8, A_9 get together. BUT they do not trust each other!

1. A_2 thinks that A_7 is a traitor!
2. A_7 thinks A_4 will confuse them just for the fun of it.
3. A_8 and A_9 got into a knife fight over who proved that the muffin problem always has a rational solution. They use the knifes that were used to cut muffins.
4. The list goes on.
A Scenario

1. (5, 9) Secret Sharing.
2. The secret is s. $p > 2^s$. Zelda picks random r_4, r_3, r_2, r_1 and forms poly over \mathbb{Z}_p: $f(x) = r_4x^4 + r_3x^3 + r_2x^2 + r_1x + s \pmod{p}$.
3. For $1 \leq i \leq 9$ Zelda gives A_i the element $f(i)$.

A_2, A_4, A_7, A_8, A_9 get together. BUT they do not trust each other!

1. A_2 thinks that A_7 is a traitor!
2. A_7 thinks A_4 will confuse them just for the fun of it.
3. A_8 and A_9 got into a knife fight over who proved that the muffin problem always has a rational solution. They use the knifes that were used to cut muffins.
4. The list goes on.

Hence we need to VERIFY that everyone is telling the truth. This is called VERIFIABLE secret sharing, or VSS.
A Scenario

1. (5, 9) Secret Sharing.
2. The secret is s. $p > 2^5$. Zelda picks random r_4, r_3, r_2, r_1 and forms poly over \mathbb{Z}_p: $f(x) = r_4x^4 + r_3x^3 + r_2x^2 + r_1x + s \pmod p$.
3. For $1 \leq i \leq 9$ Zelda gives A_i the element $f(i)$.

A_2, A_4, A_7, A_8, A_9 get together. BUT they do not trust each other!

1. A_2 thinks that A_7 is a traitor!
2. A_7 thinks A_4 will confuse them just for the fun of it.
3. A_8 and A_9 got into a knife fight over who proved that the muffin problem always has a rational solution. They use the knifes that were used to cut muffins.
4. The list goes on.

Hence we need to VERIFY that everyone is telling the truth. This is called VERIFIABLE secret sharing, or VSS.

In all protocols, Zelda broadcasts the prime p and the length n. We omit this step to save space on the slides.
For all VSS schemes we consider we assume Discrete Log is hard.
Hardness Assumption For All (t, m) VSS Schemes

For all VSS schemes we consider we assume Discrete Log is hard.

In all of them we will give all players a number like g^a. They cannot find a.
First Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2\) | \(s\).

2. Zelda finds a generator \(g\) for \(Z_p\).

3. Zelda forms poly over \(Z_p\): pick rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.\]

4. For \(1 \leq i \leq m\) Zelda gives \(A_if(i)\).

5. Zelda broadcasts \(g, gs\) (this does not reveal \(s\)).

Recover
Any group of \(t\) can determine \(f\) and hence \(s\).

Verify
Once a group has \(s\) they compute \(g^s\) and see if it matches.
If so then they know they have the correct secret. If no then they know someone is a stinking rotten liar.

1. If verify \(s\) there may still be two liars who cancel out.
2. If do not agree they do not know who the liar is.
3. Does not serve as a deterrent.
First Attempt at (t, m) VSS

1. Secret is s. Zelda uses $p > 2^{|s|}$.
First Attempt at (t, m) VSS

1. Secret is s. Zelda uses $p > 2^{|s|}$.
2. Zelda finds a generator g for \mathbb{Z}_p.
First Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): pick rand \(r_{t-1}, \ldots, r_1\),
 \(f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s\).
First Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{\|s\|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): pick rand \(r_{t-1}, \ldots, r_1\), \(f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s\).
4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).
First Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): pick rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i; f(i)\).
5. Zelda broadcasts \(g, g^s\) (this does not reveal \(s\)).
First Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): pick rand \(r_{t-1}, \ldots, r_1\),
 \[
f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.
\]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).
5. Zelda broadcasts \(g, g^s\) (this does not reveal \(s\)).

Recover Any group of \(t\) can determine \(f\) and hence \(s\).
First Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): pick rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i\ f(i)\).
5. Zelda broadcasts \(g, g^s\) (this does not reveal \(s\)).

Recover Any group of \(t\) can determine \(f\) and hence \(s\).

Verify Once a group has \(s\) they compute \(g^s\) and see if it matches.
If so then they **know** they have the correct secret. If no then they **know** someone is a **stinking rotten liar**.
First Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): pick rand \(r_{t-1}, \ldots, r_1\),
 \(f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s\).
4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).
5. Zelda broadcasts \(g, g^s\) (this does not reveal \(s\)).

Recover Any group of \(t\) can determine \(f\) and hence \(s\).

Verify Once a group has \(s\) they compute \(g^s\) and see if it matches. If so then they **know** they have the correct secret. If no then they know someone is a **stinking rotten liar**.

1. If verify \(s\) there may still be two liars who cancel out.
First Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): pick rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i\) \(f(i)\).
5. Zelda broadcasts \(g, g^s\) (this does not reveal \(s\)).

Recover Any group of \(t\) can determine \(f\) and hence \(s\).

Verify Once a group has \(s\) they compute \(g^s\) and see if it matches. If so then they **know** they have the correct secret. If no then they **know** someone is a **stinking rotten liar**.

1. If verify \(s\) there may still be two liars who cancel out.
2. If do not agree they do not know who the liar is.
First Attempt at (t, m) VSS

1. Secret is s. Zelda uses $p > 2^{|s|}$.
2. Zelda finds a generator g for \mathbb{Z}_p.
3. Zelda forms poly over \mathbb{Z}_p: pick rand r_{t-1}, \ldots, r_1,
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]
4. For $1 \leq i \leq m$ Zelda gives $A_i \cdot f(i)$.
5. Zelda broadcasts g, g^s (this does not reveal s).

Recover Any group of t can determine f and hence s.

Verify Once a group has s they compute g^s and see if it matches. If so then they **know** they have the correct secret. If no then they **know** someone is a **stinking rotten liar**.

1. If verify s there may still be two liars who cancel out.
2. If do not agree they do not know who the liar is.
3. Does not serve as a deterrent.
Second Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2\) | 7 |.

2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).

3. Zelda forms poly over \(\mathbb{Z}_p\): picks random \(r - 1, \ldots, r_1\),

 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]

4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).

5. Zelda broadcasts \(g, g f(1), \ldots, g f(m)\). (No \(f(i)\) is revealed.)

Recovering the usual – any group of \(t\) can blah blah.

Verifying: If \(A_i\) says \(f(i) = 17\), they can all then check if \(g^{17}\) is what Zelda said \(g f(i)\) is, so can determine if \(A_i\) is truthful.

1. **PRO** If someone lies they know right away.

2. **CON** Leaks! Since \(g f(i)\)'s are all broadcast, if \(f(i) = f(j)\) then everyone will know that.
Second Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
Second Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
Second Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[
f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.
 \]
Second Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.\]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i\) \(f(i)\).
Second Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \(f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s\).
4. For \(1 \leq i \leq m\) Zelda gives \(A_i\) \(f(i)\).
5. Zelda broadcasts \(g, g^{f(1)}, \ldots, g^{f(m)}\). (No \(f(i)\) is revealed.)
Second Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i \ f(i)\).
5. Zelda broadcasts \(g, g^{f(1)}, \ldots, g^{f(m)}\). (No \(f(i)\) is revealed.)

Recover The usual – any group of \(t\) can blah blah.
Second Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.\]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).
5. Zelda broadcasts \(g, g^{f(1)}, \ldots, g^{f(m)}\). (No \(f(i)\) is revealed.)

Recover The usual – any group of \(t\) can blah blah.

Verify If \(A_i\) says \(f(i) = 17\), they can all then check if \(g^{17}\) is what Zelda said \(g^{f(i)}\) is, so can determine if \(A_i\) is truthful.
Second Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).
5. Zelda broadcasts \(g, g^{f(1)}, \ldots, g^{f(m)}\). (No \(f(i)\) is revealed.)

Recover The usual – any group of \(t\) can blah blah.

Verify If \(A_i\) says \(f(i) = 17\), they can all then check if \(g^{17}\) is what Zelda said \(g^{f(i)}\) is, so can determine if \(A_i\) is truthful.

1. **PRO** If someone lies they know right away.
Second Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i \ f(i)\).
5. Zelda broadcasts \(g, g^{f(1)}, \ldots, g^{f(m)}\). (No \(f(i)\) is revealed.)

Recover The usual – any group of \(t\) can blah blah.

Verify If \(A_i\) says \(f(i) = 17\), they can all then check if \(g^{17}\) is what
Zelda said \(g^{f(i)}\) is, so can determine if \(A_i\) is truthful.

1. **PRO** If someone lies they know right away.
2. **CON** Leaks! Since \(g^{f(i)}\)'s are all broadcast, if \(f(i) = f(j)\)
 then **everyone** will know that.
Third Attempt at (t, m) VSS

1. Secret is s. Zelda uses $p > 2$.
2. Zelda finds a generator g for \mathbb{Z}_p.
3. Zelda forms poly over \mathbb{Z}_p: picks random r_{t-1}, \ldots, r_1, $f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
4. For $1 \leq i \leq m$ Zelda gives $A_i f(i)$.
5. Zelda broadcasts $g, g_{r_1}, \ldots, g_{r_{t-1}}, g_s$, g_{r_i} not revealed.

Recover: The usual – any group of t can blah blah.
Verify: A_i reveals $f(i) = 17$. Group computes:
1) g_{17}.
2) $(g_{r_{t-1}})^{i(t-1)} \times (g_{r_{t-2}})^{i(t-2)} \times \cdots \times (g_{r_1})^{i1} \times g_0 = g_{f(i)}$
If this is g_{17} then A_i is truthful. If not then A_i is dirty stinking liar.

1. PRO: If someone lies they know right away.
2. PRO: Serves as a deterrent.
3. PRO: Zelda is communicating only t strings.
4. PRO: Security – see next slide.
Third Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
Third Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
Third Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{\lfloor s \rfloor}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]
Third Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \(f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s\).
4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).
Third Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{\left\lceil s \right\rceil}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.\]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i \cdot f(i)\).
5. Zelda broadcasts \(g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g\) (\(r_i\) not revealed).
Third Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).
5. Zelda broadcasts \(g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g\) (\(r_i\) not revealed).

Recover The usual – any group of \(t\) can blah blah.
Third Attempt at \((t,m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i \ f(i)\).
5. Zelda broadcasts \(g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g\) (\(r_i\) not revealed).

Recover The usual – any group of \(t\) can blah blah.

Verify \(A_i\) reveals \(f(i) = 17\). Group computes:
Third Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.\]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i\) \(f(i)\).
5. Zelda broadcasts \(g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g\) (\(r_i\) not revealed).

Recover The usual – any group of \(t\) can blah blah.

Verify \(A_i\) reveals \(f(i) = 17\). Group computes:

1) \(g^{17}\).
Third Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
\[
f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.
\]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).
5. Zelda broadcasts \(g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g\) (\(r_i\) not revealed).

Recover The usual – any group of \(t\) can blah blah.

Verify \(A_i\) reveals \(f(i) = 17\). Group computes:
1) \(g^{17}\).
2) \((g^{r_{t-1}})^{i_{t-1}} \times (g^{r_{t-2}})^{i_{t-2}} \times \cdots \times (g^{r_1})^{i_1} \times (g^s)^{i_0} = g^{f(i)}\)
Third Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),

 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.\]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).
5. Zelda broadcasts \(g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g\) (\(r_i\) not revealed).

Recover The usual – any group of \(t\) can blah blah.

Verify \(A_i\) reveals \(f(i) = 17\). Group computes:
1) \(g^{17}\).
2) \((g^{r_{t-1}})^{i_{t-1}} \times (g^{r_{t-2}})^{i_{t-2}} \times \cdots \times (g^{r_1})^{i_1} \times (g^s)^{i_0} = g^{f(i)}\)

If this is \(g^{17}\) then \(A_i\) is truthful. If not then \(A_i\) is dirty stinking liar.
Third Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).
5. Zelda broadcasts \(g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g\) (\(r_i\) not revealed).

Recover The usual – any group of \(t\) can blah blah.

Verify \(A_i\) reveals \(f(i) = 17\). Group computes:
1) \(g^{17}\).
2) \((g^{r_{t-1}})^{i^{t-1}} \times (g^{r_{t-2}})^{i^{t-2}} \times \cdots \times (g^{r_1})^{i^1} \times (g^s)^{i^0} = g^{f(i)}\)
 If this is \(g^{17}\) then \(A_i\) is truthful. If not then \(A_i\) is dirty stinking liar.

1. **PRO** If someone lies they know right away.
Third Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1, \)

\[
f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.
\]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).
5. Zelda broadcasts \(g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g\) (\(r_i\) not revealed).

Recover The usual – any group of \(t\) can blah blah.

Verify \(A_i\) reveals \(f(i) = 17\). Group computes:

1) \(g^{17}\).
2) \((g^{r_{t-1}})^{t-1} \times (g^{r_{t-2}})^{t-2} \times \cdots \times (g^{r_1})^{i_1} \times (g^s)^i_0 = g^{f(i)}\)

If this is \(g^{17}\) then \(A_i\) is truthful. If not then \(A_i\) is dirty stinking liar.

1. **PRO** If someone lies they know right away.
2. **PRO** Serves as a deterrent.
Third Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s.\]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).
5. Zelda broadcasts \(g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g\) (\(r_i\) not revealed).

Recover The usual – any group of \(t\) can blah blah.

Verify \(A_i\) reveals \(f(i) = 17\). Group computes:

1) \(g^{17}\).
2) \((g^{r_{t-1}})^{t-1} \times (g^{r_{t-2}})^{t-2} \times \cdots \times (g^{r_1})^{i_1} \times (g^s)^{i_0} = g^{f(i)}\)

If this is \(g^{17}\) then \(A_i\) is truthful. If not then \(A_i\) is dirty stinking liar.

1. **PRO** If someone lies they know right away.
2. **PRO** Serves as a deterrent.
3. **PRO** Zelda is communicating only \(t\) strings.
Third Attempt at \((t, m)\) VSS

1. Secret is \(s\). Zelda uses \(p > 2^{|s|}\).
2. Zelda finds a generator \(g\) for \(\mathbb{Z}_p\).
3. Zelda forms poly over \(\mathbb{Z}_p\): picks rand \(r_{t-1}, \ldots, r_1\),
 \[f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s. \]
4. For \(1 \leq i \leq m\) Zelda gives \(A_i f(i)\).
5. Zelda broadcasts \(g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g\) (\(r_i\) not revealed).

Recover The usual – any group of \(t\) can blah blah.

Verify \(A_i\) reveals \(f(i) = 17\). Group computes:
1) \(g^{17}\).
2) \((g^{r_{t-1}})^{i_{t-1}} \times (g^{r_{t-2}})^{i_{t-2}} \times \cdots \times (g^{r_1})^{i_1} \times (g^s)^{i_0} = g^{f(i)}\)
 If this is \(g^{17}\) then \(A_i\) is truthful. If not then \(A_i\) is dirty stinking liar.

1. **PRO** If someone lies they know right away.
2. **PRO** Serves as a deterrent.
3. **PRO** Zelda is communicating only \(t\) strings.
4. **PRO** Security – see next slide.
The scheme above for VSS is by Paul Feldman.
The scheme above for VSS is by Paul Feldman.

A Practical Scheme for non-interactive Verifiable Secret Sharing

28th Conference on Foundations of Computer Science (FOCS)

1987

The scheme above for VSS is by Paul Feldman.

A Practical Scheme for non-interactive Verifiable Secret Sharing

28th Conference on Foundations of Computer Science (FOCS)
1987

They give proof of security based on zero-knowledge protocols which are themselves based on blah blah.
More Can Be Said About Secret Sharing

arXiv is a website where Academics in Math, Comp Sci, and Physics post papers. How many of those papers are on Secret Sharing?

About 14,500 so over 10,000.
More Can Be Said About Secret Sharing

arXiv is a website where Academics in Math, Comp Sci, and Physics post papers. How many of those papers are on Secret Sharing?

Vote

1. Between 0 and 100
2. Between 100 and 1000
3. Between 1000 and 10,000
4. Over 10,000

About 14,500 so over 10,000.
arXiv is a website where Academics in Math, Comp Sci, and Physics post papers. How many of those papers are on Secret Sharing?

Vote

1. Between 0 and 100
2. Between 100 and 1000
3. Between 1000 and 10,000
4. Over 10,000

Answer About 14,500 so over 10,000.
BILL STOP
RECORDING