GCD and Inverses

Exposition by William Gasarch
How to find the GCD or two numbers.
I give an example:
$\operatorname{GCD}(270,192)$
$270=192 \times 1+78$
$192=78 \times 2+36$
$78=36 \times 2+6$
$36=6 \times 6+0$
OKAY, so that means that the answer is 6 .
But it means MORE than that! Take the second to last line:
$6=78-36 \times 2$
I CAN write 78 as a combo of 270 and 192
I CAN write 36 as a combo of 192 and 78. I CAN THEN write 78 as a combo of 270 and 192.

POINT: After all of this I can get 6 (the GCD) as a combo of 192 and 270. I will do that NOW:
$6=78-36 \times 2$
$6=(270-192)-(192-78 \times 2) \times 2$
$6=270-192-2 \times 192+4 \times 78$
$6=270-3 \times 192+4 \times 78$
$6=270-3 \times 192+4 \times(270-192)$
$6=270-3 \times 192+4 \times 270-4 \times 192$

$$
6=5 \times 270-7 \times 192
$$

Does this help us find inverses. NO. But lets do an example where it does! It will be when the GCD is 1 .
$\operatorname{GCD}(270,193)$
$270=193 \times 1+77$
$193=77 \times 2+39$
$77=39 \times 1+38$
$39=38 \times 1+1$
$38=1 \times 38+0$
OKAY, so that means that the answer is 1 . it means MORE than that! Look at $1=39-38$
We write 39 and 38 as combos of prior element and eventually get back to 193 and 270 .
$1=39-38$
$1=(193-77 \times 2)-(77-39)$
$1=193-77 \times 2-77+39$
$1=193-77 \times 3+39$
$1=193-77 \times 3+(193-77 \times 2)$
$1=193-77 \times 3+193-77 \times 2$
$1=193 \times 2-77 \times 5$
$1=193 \times 2-(270-193) \times 5$
$1=193 \times 7-5 \times 270$

$$
1=193 \times 7-5 \times 270
$$

If I want to find the INVERSE of $193 \bmod 270$, take this equation MOD 270

$$
\begin{gathered}
1 \equiv 193 \times 7-5 \times 270 \quad(\bmod 270) \\
1 \equiv 193 \times 7 \quad(\bmod 270)
\end{gathered}
$$

GREAT- the inverse of 193 is $7 \bmod 270$.
If I want to find the INVERSE of $270 \bmod 193$ then. NO! WAIT- when dealing $\bmod 193$ there is no $270.270 \equiv 77(\bmod 1) 93$.

OKAY- I want to find the inverse of $77 \bmod 193$. Take the equation above mod 193

$$
1 \equiv 193 \times 7-5 \times 270 \quad(\bmod 193)
$$

Two things of interest happen: the 193 -terms term is 0 and the 270 -term is -5×77. So we have

$$
1 \equiv-5 \times 77 \equiv 193
$$

So -5 is the inverse of $88 \bmod 193$. NO WAIT. We need to find $-5 \bmod 193$, which is $193-5=188$

So the inverse of $88 \bmod 193$ is 188 .

