HW 06 CMSC/MATH/ENEE 456. Morally DUE Oct 26

1. (0 points) What is the day and time of the timed part of the midterm?

 SOLUTION
 Oct 28 at 8:00PM
 END OF SOLUTION
2. (40 points) In this problem you will use the ideas behind Pollard’s ρ-algorithm to factor 143, 371, and 551.

(a) (15 points) Let \(f(x) = x^2 + 1 \) (mod 143). Let \(x_0 = 7 \).

Compute

\[x_1 = f(x_0), \ x_2 = f(f(x_0)), \ldots \] until you have two numbers \(x_i \) and \(x_j \) who’s difference \(|x_i - x_j|\) is NOT relatively prime to 143.

Write down:

\(i \) is ... \\
\(j \) is ... \\
\(x_i \) is ... \\
\(x_j \) is ... \\
\(\text{GCD}(|x_i - x_j|, 143) \) is ...

(The GCD should be a factor of 143).

\textbf{SOLUTION}

Solution 143: \(x_0 = 7, \ x_1 = 50 \) so we try \(\text{GCD}(50 - 7, 143) = \text{GCD}(43, 143) = 1 \). NO.

\(x_2 = 70 \) so we try:

\(\text{GCD}(70 - 7, 143) = \text{GCD}(63, 143) = 1 \) NO, and
\(\text{GCD}(70 - 50, 143) = \text{GCD}(20, 143) = 1 \) NO.

\(x_3 = 39 \) so we try:

\(\text{GCD}(39 - 7, 143) = \text{GCD}(32, 143) = 1 \) NO, and
\(\text{GCD}(50 - 39, 143) = \text{GCD}(11, 143) = 11 \). YEAH! 11 is a factor!

\textbf{END OF SOLUTION}
(b) (10 points) Let \(f(x) = x^2 + 1 \pmod{371} \). Let \(x_0 = 7 \). Compute
\(x_1 = f(x_0), \ x_2 = f(f(x_0)), \ldots \) until you have two numbers \(x_i \) and
\(x_j \) who’s difference \(|x_i - x_j|\) is NOT relatively prime to 371.

Write down:

\(i \) is \ldots

\(j \) is \ldots

\(x_i \) is \ldots

\(x_j \) is \ldots

\(GCD(|x_i - x_j|, 371) \) is \ldots

(The GCD should be a factor of 371).

SOLUTION

Solution 371:

\(x_0 = 7, x_1 = 50 \) so we try \(GCD(50 - 7, 371) = GCD(43, 371) = 1 \).

No.

\(x_2 = 275 \) so we try

\(GCD(275 - 7, 371) = GCD(268, 371) = 1 \). No.

\(GCD(275 - 50, 371) = GCD(225, 371) = 1 \). No.

\(x_3 = 313 \) so we try

\(GCD(313 - 7, 371) = GCD(306, 371) = 1 \). No.

\(GCD(313 - 50, 371) = GCD(263, 371) = 1 \). No.

\(GCD(313 - 275, 371) = GCD(38, 371) = 1 \). No.

\(x_4 = 26 \) so we try

\(GCD(313 - 26, 371) = GCD(287, 371) = 7 \). Yeah! 7 is a factor!

\(GCD(|x_4 - x_3|, 371) = GCD(313 - 26, 371) = 7 \)

END OF SOLUTION
(c) (15 points) Let $f(x) = x^2 + 1 \pmod{551}$. Let $x_0 = 7$. Compute $x_1 = f(x_0)$, $x_2 = f(f(x_0))$, \ldots until you have two numbers x_i and x_j who's difference $|x_i - x_j|$ is NOT relatively prime to 551.

Write down:

i is \ldots

j is \ldots

x_i is \ldots

x_j is \ldots

$GCD(|x_i - x_j|, 551)$ is \ldots

(The GCD should be a factor of 551).

SOLUTION

$x_0 = 7$, $x_1 = 50$ so we try $GCD(50 - 7, 551) = GCD(43, 551) = 1$. NO.

$x_2 = 297$ so we try $GCD(297 - 7, 551) = GCD(290, 551) = 29$. YEAH! 29 is a factor!

END OF SOLUTION
3. (30 points) Write down TWO facts you learned in the guest lecture on cheating in bridge that you found interesting, and why.

SOLUTION

(These are just mine (Bill’s) thoughts. You can and probably did have a different answer.)

1) Thinking about a bid can itself give your partner information. This is like a timing attack on RSA!

2) Cheating in bridge is not punished as harshly as it should be.

END OF SOLUTION
4. (30 points) Write down TWO facts you learned in the guest lecture on censorship that you found interesting, and why.

SOLUTION

(These are just mine (Bill’s) thoughts. You can and probably did have a different answer.)

1) How countries censor is very complicated. It’s NOT just looking at every email.

2) There are many ways around censors, but it is a cat-and-mouse game where the censors can read our papers (which give them an advantage) but the breaker-of-censors can always try new things (which gives them the advantage).

END OF SOLUTION