
Kevin Bock

Automating Censorship
Evasion

In-network censorship by nation-states

Client Server

In-network censorship by nation-states

Client Server

In-network censorship by nation-states

Client Server

In-network censorship by nation-states

Client Server

In-network censorship by nation-states

Client Server

In-network censorship by nation-states

Client Server

Spoofed tear-down packets

In-network censorship by nation-states

Client Server

Spoofed tear-down packets

In-network censorship by nation-states

Client Server

The client
terminated

The server
terminated

Requires per-flow state

Censors fighting end to end principle

Spoofed tear-down packets

In-network censorship by nation-states

Client Server

TTL=2

Requires per-flow state

Evasion can take advantage of these shortcuts

Censors fighting end to end principle

In-network censorship by nation-states

Client Server

TTL=1

Requires per-flow state

Evasion can take advantage of these shortcuts

Censors fighting end to end principle

In-network censorship by nation-states

Client Server

Still good

The client
terminated

TTL=0

Requires per-flow state

Evasion can take advantage of these shortcuts

Censors fighting end to end principle

Censorship evasion research

Evade

Understand how censors operate1

Apply insight to create evasion strategies2

Largely manual efforts give censors the advantage

MeasureHypothesize

Our work gives evasion the advantage

Automated censorship evasion research

Evade

Automate the discovery of new evasion strategies1

Use the strategies to understand
how the censor works

2

MeasureHypothesize

Evade

Automate the discovery of new evasion strategies1

Use the strategies to understand
how the censor works

2

MeasureHypothesize

Genetic Evasion

Geneva

Geneva
Genetic Evasion

T
A

C
G

Composition MutationBuilding Blocks Fitness

Geneva runs strictly at one side

Geneva
Genetic Evasion

Building Blocks

Client Server

Manipulates packets to and from the client

Geneva
Genetic Evasion

Building Blocks

Manipulates packets to and from the client

Bit manipulation Known strategies

Versatile but inefficient Efficient but limited

Geneva
Genetic Evasion

Building Blocks

Manipulates packets to and from the client

Duplicate

Tamper

Fragment

Drop

Fragment (IP) or
Segment (TCP)

Alter or corrupt
any TCP/IP header field

No semantic understanding
of what the fields mean

Geneva
Genetic Evasion

Building Blocks

Duplicate

Tamper

Fragment

Drop

Actions manipulate
individual packets

Composition Mutation Fitness

Geneva
Genetic Evasion

Building Blocks

Duplicate

Tamper

Fragment

Drop

Actions manipulate
individual packets

Composition Mutation Fitness

Genetic Evasion

Geneva

Composition
Match

exact

Action
in-order

Running a Strategy

Client Server

Composition

Running a Strategy

Client Server

Composition

Running a Strategy

Client Server

Composition

Running a Strategy

Client Server

Composition

Running a Strategy

Client Server

Composition

TTL=8

TTL=2

Running a Strategy

Client Server

Composition

TTL=2

Running a Strategy

Client Server

Composition

Geneva
Genetic Evasion

Building Blocks

Duplicate

Tamper

Fragment

Drop

Actions manipulate
individual packets

Composition Mutation Fitness
Actions compose

to form trees

Tamper
tcp.flags = R

Tamper
ip.ttl = 2

Duplicate

out:tcp.flags=A

Geneva
Genetic Evasion

Building Blocks

Duplicate

Tamper

Fragment

Drop

Actions manipulate
individual packets

Composition Mutation Fitness
Actions compose

to form trees

Tamper
tcp.flags = R

Tamper
ip.ttl = 2

Duplicate

out:tcp.flags=A

Geneva
Genetic Evasion

Building Blocks

Duplicate

Tamper

Fragment

Drop

Actions manipulate
individual packets

Composition
Actions compose

to form trees

Mutation
Randomly alter types,

values, and trees

Fitness

Tamper
tcp.flags = R

Tamper
ip.ttl = 2

Duplicate

out:tcp.flags=A

Geneva
Genetic Evasion

FitnessBuilding Blocks

Duplicate

Tamper

Fragment

Drop

Actions manipulate
individual packets

Composition
Actions compose

to form trees

Mutation
Randomly alter types,

values, and trees

Tamper
tcp.flags = R

Tamper
ip.ttl = 2

Duplicate

out:tcp.flags=A

Geneva
Genetic Evasion

Fitness

Which individuals should survive to the next generation?

Geneva
Genetic Evasion

Fitness

Which individuals should survive to the next generation?

Geneva
Genetic Evasion

Fitness

Which individuals should survive to the next generation?

Successfully obtaining forbidden content

Not triggering on any packets

Breaking the TCP connection

Conciseness

Geneva
Genetic Evasion

Building Blocks

Duplicate

Tamper

Fragment

Drop

Actions manipulate
individual packets

Composition
Actions compose

to form trees

Mutation
Randomly alter types,

values, and trees

Fitness
Goal: Fewest actions
needed to succeed

No trigger

Break TCP

Successful

Concise

Tamper
tcp.flags = R

Tamper
ip.ttl = 2

Duplicate

out:tcp.flags=A

In-lab experiments
Against mock censors

Client-side results

Failed to find the strategies
we did not give building blocks for

Found virtually all of the
previously known strategy species

Client-side results – Real censor experiments

China India Kazakhstan

Species

Sub-species

20+
30+

The underlying bug

How Geneva exploits it

Variants80+ Functionally distinct

Iran

45+ 24+15+ 13+

Tamper
tcp.flags = R

Tamper
ip.ttl = 8

Duplicate

out:tcp.flags=A

During the TCP handshake,
insert a TTL-limited RST

Teardown species

Segmentation species

Fragment
tcp:8:inorder

Fragment
tcp:4:inorder

out:tcp.flags=PA

Segment the request

archGET /?se =ultrasurf

Tamper
tcp.flags = R

Tamper
ip.ttl = 8

Duplicate

out:tcp.flags=A

During the TCP handshake,
insert a TTL-limited RST

Teardown species

Segment the request

Segmentation species

Fragment
tcp:8:inorder

Fragment
tcp:4:inorder

out:tcp.flags=PA

archGET /?se =ultrasurf

Tamper
tcp.flags = R

Tamper
ip.ttl = 8

Duplicate

out:tcp.flags=A

During the TCP handshake,
insert a TTL-limited RST

Teardown species

Remainder8 4

Segment the request,
but not the keyword

Segmentation species

Fragment
tcp:8:inorder

Fragment
tcp:4:inorder

out:tcp.flags=PA

archGET /?se =ultrasurf

Tamper
tcp.flags = R

Tamper
ip.ttl = 8

Duplicate

out:tcp.flags=A

During the TCP handshake,
insert a TTL-limited RST

Teardown species

Segment the request,
but not the keyword

Segmentation species

Fragment
tcp:8:inorder

Fragment
tcp:4:inorder

out:tcp.flags=PA

arch

GET /?se

=ultrasurf

Tamper
tcp.flags = R

Tamper
ip.ttl = 8

Duplicate

out:tcp.flags=A

During the TCP handshake,
insert a TTL-limited RST

Teardown species

≤ 8

≥ 12

Segment the request,
but not the keyword

Segmentation species

Fragment
tcp:8:inorder

Fragment
tcp:4:inorder

out:tcp.flags=PA

arch

GET /?se

=ultrasurf

Tamper
tcp.flags = R

Tamper
ip.ttl = 8

Duplicate

out:tcp.flags=A

During the TCP handshake,
insert a TTL-limited RST

Teardown species

Client Server

Software

Censoring regime

Censorship evasion has always involved the client

Poses risks to users

Cannot help those who
do not know they are censored

Client Server

Software

Censoring regime

Server-side evasion

Server-side evasion

Software

Client Server

Censoring regime

Server-side evasion

Potentially broadens reachability
without any client-side deployment

Clients

Censoring regime

Software

Server

SYN/ACK

SYN

ACK

(query)
PSH/ACK  

(query)

ACK

Client Server

PSH/ACK  
(response)

Server-side evasion “shouldn’t” work

SYN/ACK

SYN

ACK

(query)
PSH/ACK  

(query)

ACK

Client Server

PSH/ACK  
(response)

Censored keyword

Server-side evasion “shouldn’t” work

SYN/ACK

SYN

ACK

(query)
PSH/ACK  

(query)

ACK

Client Server

PSH/ACK  
(response)

All a server does
before client is censored

Censored keyword

Server-side evasion “shouldn’t” work

SYN

SYN

SYN/ACK

(query)
PSH/ACK  

(query)

ACK

Client Server

PSH/ACK  
(response)

SYN  
(payload)

ACK

ACK

A successful server-side evasion strategy

SYN

SYN

SYN/ACK

(query)
PSH/ACK  

(query)

ACK

Client Server

PSH/ACK  
(response)

SYN  
(payload)

ACK

ACK

TCP simultaneous open

A successful server-side evasion strategy

SYN

SYN

SYN/ACK

(query)
PSH/ACK  

(query)

ACK

Client Server

PSH/ACK  
(response)

SYN  
(payload)

ACK

ACK

TCP simultaneous open

Client sends a SYN/ACK

A successful server-side evasion strategy

SYN

SYN

SYN/ACK

(query)
PSH/ACK  

(query)

ACK

Client Server

PSH/ACK  
(response)

SYN  
(payload)

ACK

ACK

TCP simultaneous open

Client sends a SYN/ACK
Censor de-synchronizes

A successful server-side evasion strategy

A successful server-side evasion strategy

DNS
FTP

HTTP
HTTPS
SMTP

89%
36%
54%
55%
70%

Success rates

Server-side evasion strategies

1 strategy
Iran/India

None of these require any client-side deployment

China
8 strategies

Kazakhstan
3 strategies

Server-side evasion results
NULL TCP Flags

HTTP 100%
Success rates

Server-side evasion results
NULL TCP Flags

HTTP 100%

SYN/ACK

SYN

ACK

(query)
PSH/ACK  

(query)

ACK

Client Server

PSH/ACK  
(response)

ø
(no flags)

Success rates

Server-side evasion results
NULL TCP Flags

HTTP 100%

Server sends a packet with
no TCP flags set

SYN/ACK

SYN

ACK

(query)
PSH/ACK  

(query)

ACK

Client Server

PSH/ACK  
(response)

ø
(no flags)

Success rates

Server-side evasion results
NULL TCP Flags

HTTP 100%

Server sends a packet with
no TCP flags setCensor can’t handle

unexpected flags SYN/ACK

SYN

ACK

(query)
PSH/ACK  

(query)

ACK

Client Server

PSH/ACK  
(response)

ø
(no flags)

Success rates

Server-side evasion results

SYN/ACK
(benign GET)

SYN/ACK
(benign GET)

Double benign-GETs

SYN/ACK
(benign GET)

SYN/ACK
(benign GET) Server sends uncensored GETs

inside two SYN/ACKs

Server-side evasion results
Double benign-GETs

SYN/ACK
(benign GET)

SYN/ACK
(benign GET) Server sends uncensored GETs

inside two SYN/ACKs
Censor confuses

connection direction

Server-side evasion results
Double benign-GETs

HTTP 100%
Success rates

Server-side evasion results
Double benign-GETs

HTTP 100%
Success rates

Server-side evasion strategies

1 strategy
Iran/India

None of these require any client-side deployment

China
8 strategies

Kazakhstan
3 strategies

Injects & blackholes
Iran

*

Server-side results – Real censor experiments

HTTP HTTPS DNS FTP SMTP

Injects TCP RSTs
China

Injects a block page
India

Injects & blackholes
Kazakhstan

Diversity of protocolsDiversity of censors

Come as you are

Windows XP
Windows 7

Windows 8.1
Windows 10
Server 2003
Server 2008
Server 2013
Server 2018 iOS 13.3

OS X 10.14
OS X 10.15 Ubuntu 12.04

Ubuntu 14.04
Ubuntu 16.04
Ubuntu 18.04

Android 10

Centos 6
Centos 7

What’s next?

New insight into how censors work

China’s new ESNI filter (July 2020)

Rapid response to new censorship

Iran’s new protocol filter (Feb 2020)

“Multi-box theory”

Success rate changes by protocol

New insights into how censors work

All of the server-side strategies
operate strictly during
the TCP 3-way handshake

So why are different applications
affected differently in China?

New Model for Chinese Censorship

IP

TCP

DNS HTTP FTP

Sane

IP

TCP

DNS

Apparently what’s happening

HTTP

TCP

IP

FTP

TCP

IP

Results suggest GFW is running
multiple censoring middleboxes in parallel

Multi-box theory

Client Server

GFW

Client Server

HTTPDNS

FTP HTTPS

GFW

How does the censor know which
one to apply to a connection?

Multi-box theory

Client Server

HTTPDNS

FTP HTTPS

GFW

Not port number
Censors effectively on any port

Multi-box theory

Client Server

HTTPDNS

FTP HTTPS

GFW

Not port number
Censors effectively on any port

Multi-box theory

Client Server

HTTPDNS

FTP HTTPS

GFW

Applies protocol fingerprinting

Multi-box theory

Client Server

HTTPDNS

FTP HTTPS

GFW

Mine!
Forbidden

Applies protocol fingerprinting

Multi-box theory

Not mine

Not mine Not mine

!

Client Server

HTTPDNS

FTP HTTPS

Used TTL-limited probes
Co-located at the network level

Where are these middleboxes?

Evade

Automate the discovery of new evasion strategies1

Use the strategies to understand
how the censor works

2

MeasureHypothesize

Genetic Evasion

Geneva

What’s next?

New insight into how censors work

China’s new ESNI filter (July 2020)

Rapid response to new censorship

Iran’s new protocol filter (Feb 2020)

“Multi-box theory”

Success rate changes by protocol

Responsive to new censorship events
February 2020: Iran launched a new system: a protocol filter

Responsive to new censorship events
February 2020: Iran launched a new system: a protocol filter

Censors connections that do not
match protocol fingerprints

Those that do match are then
subjected to standard censorship

Geneva discovered 4 strategies to evade Iran’s filter

Client Server
🇨🇳

Forbidden
SNI

🇨🇳

Encrypted
SNI

🇨🇳

Responsive to new censorship events

Geneva discovered 6 strategies to evade ESNI censorship

July 29th 2020: China begins censoring the use of Encrypted SNI

Automating the arms race

AI has the potential to fast-forward the arms race for both sides

Bugs in
implementation

Gaps in logic

Easy for censors to fix the low-hanging fruit

Harder for censors to fix systemic issues

What is the logical conclusion of the arms race?

Automating Censorship Evasion

Geneva code and website geneva.cs.umd.edu

Server-side evasion is possible

New insights into GFW

Discovers strategies quickly

Code is open source

Genetic Evasion

Geneva

