
Pseudorandomness



What Does RANDOM Mean?

Which of the following is a RANDOM string?

I 0101010101010101

I 0010111011100110

I 0000000000000000

Trick Question! There is no such think as a random string .
There is the uniform dist where all strings are equally likely.
Def: The uniform dist on {0, 1}n picks each string with prob 1

2n .
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Pseudorandom generators (PRGs)

1. Informal Definition A PRG is a poly, algorithm that
expands a short, uniform seed into a longer, output that
is hard to distinguish from random.

2. Useful for psuedo One Time Pad.

3. The Keyword-shift cipher was a primitive example.
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Intro to Formal Definition of PRGs

We define what a PRG is formally using A Game!

My wife says that Math Games are not Fun Games

The definition of PRG using games is evidence of her assertion.

Let p be a polynomial.
Let G : {0, 1}n → {0, 1}p(n) be computable in poly time.

Our intent is that G (x) looks random .

p(n) ≥ n2. If (say) p(n) = n + 1 then that is not helpful.
Might be on HW. Might be a HS student project :-)
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Formal Definition of Game Associated with PRGs

Let G : {0, 1}n → {0, 1}p(n) be computable in poly time.

Game: Alice and Eve are the players. Both have access to G .

1. Alice picks x ∈ {0, 1}n unif , computes y = G (x) ∈ {0, 1}p(n).
2. Alice picks z ∈ {0, 1}p(n) unif .

3. Alice gives {w1,w2} = {y , z} to Eve. z is either w1 or w2.

4. Eve outputs one of {w1,w2} hoping its z .

5. If Eve output z then she wins!

Can Eve win this game with probability over 1
2? Discuss.

Depends on how much Computational Power Eve has.
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Eve Wins with prob > 1
2 with Unlimited Comp

Eve’s strategy:

1. Eve gets as input w1,w2. z is either w1 or w2.

2. Eve creates the set

A = {G (x) : x ∈ {0, 1}n}

(This takes Exponential Time!)

3. If w2 /∈ A then Eve outputs w2 and she is right!

4. If w1 /∈ A then Eve outputs w1 and she is right!

5. If w1,w2 ∈ A then Eve outputs w1. She might be wrong.

Prob that Eve loses is ≤ Prob that z ∈ A.
There are 2p(n) strings that z could be. Only 2n of them are in A.

Prob Eve loses is ≤ prob z ∈ A which is 2n

2p(n)
= 1

2p(n)−n <
1
2 .
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Psuedo Random Only Needs to Fool Poly Time Eve

1. In our def of PRG we will give Eve only poly time.

2. We will allow Eve to use randomization.

3. We will even allow Eve to be right > 1
2 of the time, but not

much bigger.
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Definitions Needed For PRG

1. A function f : Z+ → [0, 1] is negligible if, for every poly p,
for large n, f (n) < 1

p(n) . We use neg. Example f (n) = 1
2n

2. An algorithm is Poly Prob Time (PPT) if there is a
randomized alg for it that halts in poly time and has a neg
prob of error. Example Primality.
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Formal Definition of PRGs (Finally!)

Def G is a PRG if for all PPT Eves, there is a neg function
ε(n) such that

Pr[Eve Wins] ≤ 1

2
+ ε(n)



Candidate for a PRG

1. Input b ∈ {0, 1}n.

2. Find p, be the first safe prime ≥ 1b.

3. Find g , the smallest generator of of Z∗p. Note that Z∗p has
∼ 2n elements and every element of it can be viewed as an
n-bit string.

4. Compute (g1, g2, . . . , gn2) all mod p.

5. View (g1, g2, . . . , gn2) as n-bit strings.

6. Let bi be the right-most-bit of g i .

7. Output b1b2 · · · bn2
Not known if this is really PRG.
But assuming Discrete Log is hard still not known!
But thought to be PRG.
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