Pseudorandomness

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Which of the following is a RANDOM string?

- 010101010101010101
- 0010111011100110

Which of the following is a RANDOM string?

- 010101010101010101
- 0010111011100110

Trick Question! There is no such think as a random string .

Which of the following is a RANDOM string?

- 010101010101010101
- 0010111011100110

Trick Question! There is no such think as a random **string**. There is the uniform **dist** where all strings are equally likely.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Which of the following is a RANDOM string?

- 010101010101010101
- 0010111011100110

Trick Question! There is no such think as a random **string**. There is the uniform **dist** where all strings are equally likely. **Def:** The **uniform dist** on $\{0,1\}^n$ picks each string with prob $\frac{1}{2^n}$.

<ロト (個) (目) (目) (日) (の)</p>

1. Informal Definition A PRG is a poly, algorithm that expands a short, uniform seed into a longer, output that is hard to distinguish from random.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

1. Informal Definition A PRG is a poly, algorithm that expands a short, uniform seed into a longer, output that is hard to distinguish from random.

2. Useful for psuedo One Time Pad.

1. Informal Definition A PRG is a poly, algorithm that expands a short, uniform seed into a longer, output that is hard to distinguish from random.

- 2. Useful for psuedo One Time Pad.
- 3. The Keyword-shift cipher was a primitive example.

We define what a PRG is formally using A Game!

We define what a PRG is formally using A Game!

My wife says that Math Games are not Fun Games

(ロト (個) (E) (E) (E) (E) のへの

We define what a PRG is formally using A Game!

My wife says that Math Games are not Fun Games

The definition of PRG using games is evidence of her assertion.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We define what a PRG is formally using A Game!

My wife says that Math Games are not Fun Games

The definition of PRG using games is evidence of her assertion.

Let p be a polynomial.

We define what a PRG is formally using A Game!

My wife says that Math Games are not Fun Games

The definition of PRG using games is evidence of her assertion.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let p be a polynomial. Let $G: \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time.

We define what a PRG is formally using A Game!

My wife says that Math Games are not Fun Games

The definition of PRG using games is evidence of her assertion.

Let p be a polynomial. Let $G: \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time.

Our intent is that G(x) looks random .

We define what a PRG is formally using A Game!

My wife says that Math Games are not Fun Games

The definition of PRG using games is evidence of her assertion.

Let p be a polynomial. Let $G: \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time.

Our intent is that G(x) looks random .

 $p(n) \ge n^2$. If (say) p(n) = n + 1 then that is not helpful.

We define what a PRG is formally using A Game!

My wife says that Math Games are not Fun Games

The definition of PRG using games is evidence of her assertion.

Let p be a polynomial. Let $G: \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time.

Our intent is that G(x) looks random .

 $p(n) \ge n^2$. If (say) p(n) = n + 1 then that is not helpful. Might be on HW. Might be a HS student project :-)

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Let $G: \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time.

Let $G : \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time. Game: Alice and Eve are the players. Both have access to G.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let $G : \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time. **Game:** Alice and Eve are the players. Both have access to G. 1. Alice picks $x \in \{0,1\}^n$ unif, computes $y = G(x) \in \{0,1\}^{p(n)}$.

ション ふゆ アメリア メリア しょうくしゃ

Let $G : \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time. Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in \{0, 1\}^n$ unif, computes $y = G(x) \in \{0, 1\}^{p(n)}$.

ション ふゆ アメリア メリア しょうくしゃ

2. Alice picks $z \in \{0,1\}^{p(n)}$ unif.

Let $G : \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time. Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in \{0, 1\}^n$ unif, computes $y = G(x) \in \{0, 1\}^{p(n)}$.

- 2. Alice picks $z \in \{0,1\}^{p(n)}$ unif.
- 3. Alice gives $\{w_1, w_2\} = \{y, z\}$ to Eve. z is either w_1 or w_2 .

Let $G : \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time. Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in \{0,1\}^n$ unif, computes $y = G(x) \in \{0,1\}^{p(n)}$.

- 2. Alice picks $z \in \{0,1\}^{p(n)}$ unif.
- 3. Alice gives $\{w_1, w_2\} = \{y, z\}$ to Eve. z is either w_1 or w_2 .
- 4. Eve outputs one of $\{w_1, w_2\}$ hoping its z.

Let $G : \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time. Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in \{0,1\}^n$ unif, computes $y = G(x) \in \{0,1\}^{p(n)}$.

- 2. Alice picks $z \in \{0,1\}^{p(n)}$ unif.
- 3. Alice gives $\{w_1, w_2\} = \{y, z\}$ to Eve. z is either w_1 or w_2 .
- 4. Eve outputs one of $\{w_1, w_2\}$ hoping its z.
- 5. If Eve output z then she wins!

Let $G : \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time. Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in \{0,1\}^n$ unif, computes $y = G(x) \in \{0,1\}^{p(n)}$.

- 2. Alice picks $z \in \{0,1\}^{p(n)}$ unif.
- 3. Alice gives $\{w_1, w_2\} = \{y, z\}$ to Eve. z is either w_1 or w_2 .
- 4. Eve outputs one of $\{w_1, w_2\}$ hoping its z.
- 5. If Eve output z then she wins!

Can Eve win this game with probability over $\frac{1}{2}$?

Let $G : \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time. Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in \{0,1\}^n$ unif, computes $y = G(x) \in \{0,1\}^{p(n)}$.

- 2. Alice picks $z \in \{0,1\}^{p(n)}$ unif.
- 3. Alice gives $\{w_1, w_2\} = \{y, z\}$ to Eve. z is either w_1 or w_2 .
- 4. Eve outputs one of $\{w_1, w_2\}$ hoping its z.
- 5. If Eve output z then she wins!

Can Eve win this game with probability over $\frac{1}{2}$? Discuss.

Let $G : \{0,1\}^n \to \{0,1\}^{p(n)}$ be computable in poly time. Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in \{0, 1\}^n$ unif, computes $y = G(x) \in \{0, 1\}^{p(n)}$.

- 2. Alice picks $z \in \{0,1\}^{p(n)}$ unif.
- 3. Alice gives $\{w_1, w_2\} = \{y, z\}$ to Eve. z is either w_1 or w_2 .
- 4. Eve outputs one of $\{w_1, w_2\}$ hoping its z.
- 5. If Eve output z then she wins!

Can Eve win this game with probability over $\frac{1}{2}$? Discuss. Depends on how much Computational Power Eve has.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Eve's strategy:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Eve's strategy:

1. Eve gets as input w_1, w_2 . z is either w_1 or w_2 .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Eve's strategy:

- 1. Eve gets as input w_1, w_2 . z is either w_1 or w_2 .
- 2. Eve creates the set

Eve's strategy:

- 1. Eve gets as input w_1, w_2 . z is either w_1 or w_2 .
- 2. Eve creates the set

$$A = \{G(x) : x \in \{0,1\}^n\}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Eve's strategy:

- 1. Eve gets as input w_1, w_2 . z is either w_1 or w_2 .
- 2. Eve creates the set

$$A = \{G(x) : x \in \{0,1\}^n\}$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Eve's strategy:

- 1. Eve gets as input w_1, w_2 . z is either w_1 or w_2 .
- 2. Eve creates the set

$$A = \{G(x) : x \in \{0,1\}^n\}$$

(This takes Exponential Time!)

3. If $w_2 \notin A$ then Eve outputs w_2 and she is right!

Eve's strategy:

- 1. Eve gets as input w_1, w_2 . z is either w_1 or w_2 .
- 2. Eve creates the set

$$A = \{G(x) : x \in \{0,1\}^n\}$$

- 3. If $w_2 \notin A$ then Eve outputs w_2 and she is right!
- 4. If $w_1 \notin A$ then Eve outputs w_1 and she is right!

Eve's strategy:

- 1. Eve gets as input w_1, w_2 . z is either w_1 or w_2 .
- 2. Eve creates the set

$$A = \{G(x) : x \in \{0,1\}^n\}$$

ション ふゆ アメリア メリア しょうくしゃ

- 3. If $w_2 \notin A$ then Eve outputs w_2 and she is right!
- **4**. If $w_1 \notin A$ then Eve outputs w_1 and she is right!
- 5. If $w_1, w_2 \in A$ then Eve outputs w_1 . She might be wrong.

Eve's strategy:

- 1. Eve gets as input w_1, w_2 . z is either w_1 or w_2 .
- 2. Eve creates the set

$$A = \{G(x) : x \in \{0,1\}^n\}$$

ション ふゆ アメリア メリア しょうくしゃ

- 3. If $w_2 \notin A$ then Eve outputs w_2 and she is right!
- **4**. If $w_1 \notin A$ then Eve outputs w_1 and she is right!
- 5. If $w_1, w_2 \in A$ then Eve outputs w_1 . She might be wrong. Prob that Eve loses is \leq Prob that $z \in A$.
Eve Wins with prob $> \frac{1}{2}$ with Unlimited Comp

Eve's strategy:

- 1. Eve gets as input w_1, w_2 . z is either w_1 or w_2 .
- 2. Eve creates the set

$$A = \{G(x) : x \in \{0,1\}^n\}$$

(This takes Exponential Time!)

- 3. If $w_2 \notin A$ then Eve outputs w_2 and she is right!
- **4**. If $w_1 \notin A$ then Eve outputs w_1 and she is right!

5. If $w_1, w_2 \in A$ then Eve outputs w_1 . She might be wrong.

Prob that Eve loses is \leq Prob that $z \in A$. There are $2^{p(n)}$ strings that z could be. Only 2^n of them are in A.

Eve Wins with prob $> \frac{1}{2}$ with Unlimited Comp

Eve's strategy:

- 1. Eve gets as input w_1, w_2 . z is either w_1 or w_2 .
- 2. Eve creates the set

$$A = \{G(x) : x \in \{0,1\}^n\}$$

(This takes Exponential Time!)

- 3. If $w_2 \notin A$ then Eve outputs w_2 and she is right!
- **4**. If $w_1 \notin A$ then Eve outputs w_1 and she is right!

5. If $w_1, w_2 \in A$ then Eve outputs w_1 . She might be wrong. Prob that Eve loses is \leq Prob that $z \in A$. There are $2^{p(n)}$ strings that z could be. Only 2^n of them are in A.

Prob Eve loses is \leq prob $z \in A$ which is $\frac{2^n}{2^{p(n)}} = \frac{1}{2^{p(n)-n}} < \frac{1}{2}$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □> ○ < ♡

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1. In our def of PRG we will give Eve only poly time.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- 1. In our def of PRG we will give Eve only poly time.
- 2. We will allow Eve to use randomization.

- 1. In our def of PRG we will give Eve only poly time.
- 2. We will allow Eve to use randomization.
- 3. We will even allow Eve to be right $> \frac{1}{2}$ of the time, but not much bigger.

Definitions Needed For PRG

<ロ> <目> <目> <目> <目> <目> <目> <目> <日> <日> <日> <日> <日> <日> <日> <日</p>

Definitions Needed For PRG

1. A function $f : \mathbb{Z}^+ \to [0, 1]$ is **negligible** if, for every poly p, for large n, $f(n) < \frac{1}{p(n)}$. We use **neg.** Example $f(n) = \frac{1}{2^n}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Definitions Needed For PRG

- 1. A function $f : \mathbb{Z}^+ \to [0, 1]$ is **negligible** if, for every poly p, for large n, $f(n) < \frac{1}{p(n)}$. We use **neg.** Example $f(n) = \frac{1}{2^n}$
- 2. An algorithm is **Poly Prob Time (PPT)** if there is a randomized alg for it that halts in poly time and has a **neg** prob of error. **Example** Primality.

Formal Definition of PRGs (Finally!)

Def G is a **PRG** if for all **PPT** Eves, there is a **neg function** $\epsilon(n)$ such that

$$\Pr[\mathsf{Eve Wins}] \leq rac{1}{2} + \epsilon(\mathsf{n})$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

<ロト < 課 > < 注 > < 注 > 注 の < で</p>

1. Input $b \in \{0, 1\}^n$.

- 1. Input $b \in \{0, 1\}^n$.
- 2. Find p, be the first safe prime $\geq 1b$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. Input $b \in \{0, 1\}^n$.
- 2. Find p, be the first safe prime $\geq 1b$.
- Find g, the smallest generator of of Z^{*}_p. Note that Z^{*}_p has ~ 2ⁿ elements and every element of it can be viewed as an *n*-bit string.

- 1. Input $b \in \{0, 1\}^n$.
- 2. Find p, be the first safe prime $\geq 1b$.
- Find g, the smallest generator of of Z^{*}_p. Note that Z^{*}_p has ~ 2ⁿ elements and every element of it can be viewed as an *n*-bit string.

ション ふゆ アメビア メロア しょうくしゃ

4. Compute $(g^1, g^2, ..., g^{n^2})$ all mod *p*.

- 1. Input $b \in \{0, 1\}^n$.
- 2. Find p, be the first safe prime $\geq 1b$.
- Find g, the smallest generator of of Z^{*}_p. Note that Z^{*}_p has ~ 2ⁿ elements and every element of it can be viewed as an *n*-bit string.

- 4. Compute $(g^1, g^2, ..., g^{n^2})$ all mod *p*.
- 5. View $(g^1, g^2, \ldots, g^{n^2})$ as *n*-bit strings.

- 1. Input $b \in \{0, 1\}^n$.
- 2. Find p, be the first safe prime $\geq 1b$.
- Find g, the smallest generator of of Z^{*}_p. Note that Z^{*}_p has ~ 2ⁿ elements and every element of it can be viewed as an *n*-bit string.

- 4. Compute $(g^1, g^2, ..., g^{n^2})$ all mod *p*.
- 5. View $(g^1, g^2, \ldots, g^{n^2})$ as *n*-bit strings.
- 6. Let b_i be the right-most-bit of g^i .

- 1. Input $b \in \{0, 1\}^n$.
- 2. Find p, be the first safe prime $\geq 1b$.
- Find g, the smallest generator of of Z^{*}_p. Note that Z^{*}_p has ~ 2ⁿ elements and every element of it can be viewed as an *n*-bit string.

- 4. Compute $(g^1, g^2, ..., g^{n^2})$ all mod *p*.
- 5. View $(g^1, g^2, \ldots, g^{n^2})$ as *n*-bit strings.
- 6. Let b_i be the right-most-bit of g^i .
- 7. Output $b_1 b_2 \cdots b_{n^2}$

- 1. Input $b \in \{0, 1\}^n$.
- 2. Find p, be the first safe prime $\geq 1b$.
- Find g, the smallest generator of of Z^{*}_p. Note that Z^{*}_p has ~ 2ⁿ elements and every element of it can be viewed as an *n*-bit string.

- 4. Compute $(g^1, g^2, ..., g^{n^2})$ all mod *p*.
- 5. View $(g^1, g^2, \ldots, g^{n^2})$ as *n*-bit strings.
- 6. Let b_i be the right-most-bit of g^i .
- 7. Output $b_1 b_2 \cdots b_{n^2}$

Not known if this is really PRG.

- 1. Input $b \in \{0, 1\}^n$.
- 2. Find p, be the first safe prime $\geq 1b$.
- Find g, the smallest generator of of Z^{*}_p. Note that Z^{*}_p has ~ 2ⁿ elements and every element of it can be viewed as an *n*-bit string.

- 4. Compute $(g^1, g^2, ..., g^{n^2})$ all mod *p*.
- 5. View $(g^1, g^2, \ldots, g^{n^2})$ as *n*-bit strings.
- 6. Let b_i be the right-most-bit of g^i .
- 7. Output $b_1 b_2 \cdots b_{n^2}$

Not known if this is really PRG. But assuming Discrete Log is hard

- 1. Input $b \in \{0, 1\}^n$.
- 2. Find p, be the first safe prime $\geq 1b$.
- Find g, the smallest generator of of Z^{*}_p. Note that Z^{*}_p has ~ 2ⁿ elements and every element of it can be viewed as an *n*-bit string.

- 4. Compute $(g^1, g^2, ..., g^{n^2})$ all mod *p*.
- 5. View $(g^1, g^2, \ldots, g^{n^2})$ as *n*-bit strings.
- 6. Let b_i be the right-most-bit of g^i .
- 7. Output $b_1 b_2 \cdots b_{n^2}$

Not known if this is really PRG.

But assuming Discrete Log is hard still not known!

- 1. Input $b \in \{0, 1\}^n$.
- 2. Find p, be the first safe prime $\geq 1b$.
- Find g, the smallest generator of of Z^{*}_p. Note that Z^{*}_p has ~ 2ⁿ elements and every element of it can be viewed as an *n*-bit string.

- 4. Compute $(g^1, g^2, ..., g^{n^2})$ all mod *p*.
- 5. View $(g^1, g^2, \ldots, g^{n^2})$ as *n*-bit strings.
- 6. Let b_i be the right-most-bit of g^i .
- 7. Output $b_1 b_2 \cdots b_{n^2}$

Not known if this is really PRG. But assuming Discrete Log is hard still not known! But thought to be PRG.

<u>< 마> < 問> < 돋> < 돋> < 돈< 원

1. We don't know

1. We don't know ... Would imply $P \neq NP$.

- 1. We don't know ... Would imply $P \neq NP$.
- 2. People assume certain functions are PRGs.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. We don't know . . . Would imply $P \neq NP$.
- 2. People assume certain functions are PRGs.
- 3. Can **construct** PRGs from weaker assumptions. (We will not do this.)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Let G be a PRG from $\{0,1\}^n$ to $\{0,1\}^{p(n)}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let G be a PRG from $\{0, 1\}^n$ to $\{0, 1\}^{p(n)}$.

1. Psuedo One-Time Pad:

Let G be a PRG from $\{0,1\}^n$ to $\{0,1\}^{p(n)}$.

- 1. Psuedo One-Time Pad:
- 2. Alice generates an n-bit string k, n truely random bits.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Let G be a PRG from $\{0, 1\}^n$ to $\{0, 1\}^{p(n)}$.

- 1. Psuedo One-Time Pad:
- 2. Alice generates an *n*-bit string k, *n* truely random bits.

3. Alice computer G(k) = k', p(n) psuedo-random bits.

Let G be a PRG from $\{0, 1\}^n$ to $\{0, 1\}^{p(n)}$.

- 1. Psuedo One-Time Pad:
- 2. Alice generates an *n*-bit string k, *n* truely random bits.

ション ふぼう メリン メリン しょうくしゃ

- 3. Alice computer G(k) = k', p(n) psuedo-random bits.
- 4. Alice and Bob use k' for their 1-time pad.

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.

PRO Info-Theoretic Secure.

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.

- **PRO** Info-Theoretic Secure.
- **CON** Generating truly random bits is hard.

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.

- **PRO** Info-Theoretic Secure.
- **CON** Generating truly random bits is hard.
- **Used** This really has been used, but only for short messages where security is crucial. The US-Russia Red Phone.
One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.

- **PRO** Info-Theoretic Secure.
- **CON** Generating truly random bits is hard.
- **Used** This really has been used, but only for short messages where security is crucial. The US-Russia Red Phone.

Psuedo One-Time Pad One can define Comp-theoretic security rigorously. With that definition, one can show that the Psuedo One-Time Pad is comp-theoretic secure.

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.

- **PRO** Info-Theoretic Secure.
- **CON** Generating truly random bits is hard.
- **Used** This really has been used, but only for short messages where security is crucial. The US-Russia Red Phone.

Psuedo One-Time Pad One can define Comp-theoretic security rigorously. With that definition, one can show that the Psuedo One-Time Pad is comp-theoretic secure. **PRO** Comp-Theoretic Secure.

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.

- **PRO** Info-Theoretic Secure.
- **CON** Generating truly random bits is hard.
- **Used** This really has been used, but only for short messages where security is crucial. The US-Russia Red Phone.

Psuedo One-Time Pad One can define Comp-theoretic security rigorously. With that definition, one can show that the Psuedo One-Time Pad is comp-theoretic secure.

- **PRO** Comp-Theoretic Secure.
- **CON** Proving that *G* is a PRG is hard.

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.

PRO Info-Theoretic Secure.

CON Generating truly random bits is hard.

Used This really has been used, but only for short messages where security is crucial. The US-Russia Red Phone.

Psuedo One-Time Pad One can define Comp-theoretic security rigorously. With that definition, one can show that the Psuedo One-Time Pad is comp-theoretic secure.

- **PRO** Comp-Theoretic Secure.
- **CON** Proving that *G* is a PRG is hard.

Used This is used, but with functions G that seem like PRGs but there is no proof of that.

Both One-Time Pad and Psuedo One-Time Pad have a problem for usage:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Both One-Time Pad and Psuedo One-Time Pad have a problem for usage:

Once the block of bits runs out, you can't communicate anymore!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Both One-Time Pad and Psuedo One-Time Pad have a problem for usage:

Once the block of bits runs out, you can't communicate anymore!

Hence, rather than use either One-Time Pads or Psuedo One-Time Pads, we use

Both One-Time Pad and Psuedo One-Time Pad have a problem for usage:

Once the block of bits runs out, you can't communicate anymore!

Hence, rather than use either One-Time Pads or Psuedo One-Time Pads, we use

Stream Ciphers

Both One-Time Pad and Psuedo One-Time Pad have a problem for usage:

Once the block of bits runs out, you can't communicate anymore!

Hence, rather than use either One-Time Pads or Psuedo One-Time Pads, we use

Stream Ciphers

which is the next lecture.