Pseudorandomness

What Does RANDOM Mean?

Which of the following is a RANDOM string?

- 0101010101010101
- 0010111011100110
- 0000000000000000

What Does RANDOM Mean?

Which of the following is a RANDOM string?

- 0101010101010101
- 0010111011100110
- 0000000000000000

Trick Question! There is no such think as a random string .

What Does RANDOM Mean?

Which of the following is a RANDOM string?

- 0101010101010101
- 0010111011100110
- 0000000000000000

Trick Question! There is no such think as a random string . There is the uniform dist where all strings are equally likely.

What Does RANDOM Mean?

Which of the following is a RANDOM string?

- 0101010101010101
- 0010111011100110
- 0000000000000000

Trick Question! There is no such think as a random string .
There is the uniform dist where all strings are equally likely.
Def: The uniform dist on $\{0,1\}^{n}$ picks each string with prob $\frac{1}{2^{n}}$.

Pseudorandom generators (PRGs)

Pseudorandom generators (PRGs)

1. Informal Definition A PRG is a poly, algorithm that expands a short, uniform seed into a longer, output that is hard to distinguish from random.

Pseudorandom generators (PRGs)

1. Informal Definition A PRG is a poly, algorithm that expands a short, uniform seed into a longer, output that is hard to distinguish from random.
2. Useful for psuedo One Time Pad.

Pseudorandom generators (PRGs)

1. Informal Definition A PRG is a poly, algorithm that expands a short, uniform seed into a longer, output that is hard to distinguish from random.
2. Useful for psuedo One Time Pad.
3. The Keyword-shift cipher was a primitive example.

Intro to Formal Definition of PRGs

We define what a PRG is formally using A Game!

Intro to Formal Definition of PRGs

We define what a PRG is formally using A Game!
My wife says that Math Games are not Fun Games

Intro to Formal Definition of PRGs

We define what a PRG is formally using A Game!
My wife says that Math Games are not Fun Games
The definition of PRG using games is evidence of her assertion.

Intro to Formal Definition of PRGs

We define what a PRG is formally using A Game!
My wife says that Math Games are not Fun Games
The definition of PRG using games is evidence of her assertion.
Let p be a polynomial.

Intro to Formal Definition of PRGs

We define what a PRG is formally using A Game!
My wife says that Math Games are not Fun Games
The definition of PRG using games is evidence of her assertion.
Let p be a polynomial.
Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.

Intro to Formal Definition of PRGs

We define what a PRG is formally using A Game!
My wife says that Math Games are not Fun Games
The definition of PRG using games is evidence of her assertion.
Let p be a polynomial.
Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.
Our intent is that $G(x)$ looks random.

Intro to Formal Definition of PRGs

We define what a PRG is formally using A Game!
My wife says that Math Games are not Fun Games
The definition of PRG using games is evidence of her assertion.
Let p be a polynomial.
Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.
Our intent is that $G(x)$ looks random.
$p(n) \geq n^{2}$. If (say) $p(n)=n+1$ then that is not helpful.

Intro to Formal Definition of PRGs

We define what a PRG is formally using A Game!
My wife says that Math Games are not Fun Games
The definition of PRG using games is evidence of her assertion.
Let p be a polynomial.
Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.
Our intent is that $G(x)$ looks random.
$p(n) \geq n^{2}$. If (say) $p(n)=n+1$ then that is not helpful. Might be on HW. Might be a HS student project :-)

Formal Definition of Game Associated with PRGs

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.

Formal Definition of Game Associated with PRGs

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.
Game: Alice and Eve are the players. Both have access to G.

Formal Definition of Game Associated with PRGs

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.
Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in\{0,1\}^{n}$ unif, computes $y=G(x) \in\{0,1\}^{p(n)}$.

Formal Definition of Game Associated with PRGs

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.
Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in\{0,1\}^{n}$ unif, computes $y=G(x) \in\{0,1\}^{p(n)}$.
2. Alice picks $z \in\{0,1\}^{p(n)}$ unif .

Formal Definition of Game Associated with PRGs

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.
Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in\{0,1\}^{n}$ unif, computes $y=G(x) \in\{0,1\}^{p(n)}$.
2. Alice picks $z \in\{0,1\}^{p(n)}$ unif .
3. Alice gives $\left\{w_{1}, w_{2}\right\}=\{y, z\}$ to Eve. z is either w_{1} or w_{2}.

Formal Definition of Game Associated with PRGs

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.
Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in\{0,1\}^{n}$ unif, computes $y=G(x) \in\{0,1\}^{p(n)}$.
2. Alice picks $z \in\{0,1\}^{p(n)}$ unif .
3. Alice gives $\left\{w_{1}, w_{2}\right\}=\{y, z\}$ to Eve. z is either w_{1} or w_{2}.
4. Eve outputs one of $\left\{w_{1}, w_{2}\right\}$ hoping its z.

Formal Definition of Game Associated with PRGs

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.
Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in\{0,1\}^{n}$ unif, computes $y=G(x) \in\{0,1\}^{p(n)}$.
2. Alice picks $z \in\{0,1\}^{p(n)}$ unif .
3. Alice gives $\left\{w_{1}, w_{2}\right\}=\{y, z\}$ to Eve. z is either w_{1} or w_{2}.
4. Eve outputs one of $\left\{w_{1}, w_{2}\right\}$ hoping its z.
5. If Eve output z then she wins!

Formal Definition of Game Associated with PRGs

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.
Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in\{0,1\}^{n}$ unif, computes $y=G(x) \in\{0,1\}^{p(n)}$.
2. Alice picks $z \in\{0,1\}^{p(n)}$ unif .
3. Alice gives $\left\{w_{1}, w_{2}\right\}=\{y, z\}$ to Eve. z is either w_{1} or w_{2}.
4. Eve outputs one of $\left\{w_{1}, w_{2}\right\}$ hoping its z.
5. If Eve output z then she wins!

Can Eve win this game with probability over $\frac{1}{2}$?

Formal Definition of Game Associated with PRGs

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.
Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in\{0,1\}^{n}$ unif, computes $y=G(x) \in\{0,1\}^{p(n)}$.
2. Alice picks $z \in\{0,1\}^{p(n)}$ unif .
3. Alice gives $\left\{w_{1}, w_{2}\right\}=\{y, z\}$ to Eve. z is either w_{1} or w_{2}.
4. Eve outputs one of $\left\{w_{1}, w_{2}\right\}$ hoping its z.
5. If Eve output z then she wins!

Can Eve win this game with probability over $\frac{1}{2}$? Discuss.

Formal Definition of Game Associated with PRGs

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{p(n)}$ be computable in poly time.
Game: Alice and Eve are the players. Both have access to G.

1. Alice picks $x \in\{0,1\}^{n}$ unif, computes $y=G(x) \in\{0,1\}^{p(n)}$.
2. Alice picks $z \in\{0,1\}^{p(n)}$ unif .
3. Alice gives $\left\{w_{1}, w_{2}\right\}=\{y, z\}$ to Eve. z is either w_{1} or w_{2}.
4. Eve outputs one of $\left\{w_{1}, w_{2}\right\}$ hoping its z.
5. If Eve output z then she wins!

Can Eve win this game with probability over $\frac{1}{2}$? Discuss. Depends on how much Computational Power Eve has.

Eve Wins with prob $>\frac{1}{2}$ with Unlimited Comp

Eve's strategy:

Eve Wins with prob $>\frac{1}{2}$ with Unlimited Comp

Eve's strategy:

1. Eve gets as input $w_{1}, w_{2} . z$ is either w_{1} or w_{2}.

Eve Wins with prob $>\frac{1}{2}$ with Unlimited Comp

Eve's strategy:

1. Eve gets as input $w_{1}, w_{2} . z$ is either w_{1} or w_{2}.
2. Eve creates the set

Eve Wins with prob $>\frac{1}{2}$ with Unlimited Comp

Eve's strategy:

1. Eve gets as input $w_{1}, w_{2} . z$ is either w_{1} or w_{2}.
2. Eve creates the set

$$
A=\left\{G(x): x \in\{0,1\}^{n}\right\}
$$

Eve Wins with prob $>\frac{1}{2}$ with Unlimited Comp

Eve's strategy:

1. Eve gets as input $w_{1}, w_{2} . z$ is either w_{1} or w_{2}.
2. Eve creates the set

$$
A=\left\{G(x): x \in\{0,1\}^{n}\right\}
$$

(This takes Exponential Time!)

Eve Wins with prob $>\frac{1}{2}$ with Unlimited Comp

Eve's strategy:

1. Eve gets as input $w_{1}, w_{2} . z$ is either w_{1} or w_{2}.
2. Eve creates the set

$$
A=\left\{G(x): x \in\{0,1\}^{n}\right\}
$$

(This takes Exponential Time!)
3. If $w_{2} \notin A$ then Eve outputs w_{2} and she is right!

Eve Wins with prob $>\frac{1}{2}$ with Unlimited Comp

Eve's strategy:

1. Eve gets as input $w_{1}, w_{2} . z$ is either w_{1} or w_{2}.
2. Eve creates the set

$$
A=\left\{G(x): x \in\{0,1\}^{n}\right\}
$$

(This takes Exponential Time!)
3. If $w_{2} \notin A$ then Eve outputs w_{2} and she is right!
4. If $w_{1} \notin A$ then Eve outputs w_{1} and she is right!

Eve Wins with prob $>\frac{1}{2}$ with Unlimited Comp

Eve's strategy:

1. Eve gets as input $w_{1}, w_{2} . z$ is either w_{1} or w_{2}.
2. Eve creates the set

$$
A=\left\{G(x): x \in\{0,1\}^{n}\right\}
$$

(This takes Exponential Time!)
3. If $w_{2} \notin A$ then Eve outputs w_{2} and she is right!
4. If $w_{1} \notin A$ then Eve outputs w_{1} and she is right!
5. If $w_{1}, w_{2} \in A$ then Eve outputs w_{1}. She might be wrong.

Eve Wins with prob $>\frac{1}{2}$ with Unlimited Comp

Eve's strategy:

1. Eve gets as input $w_{1}, w_{2} . z$ is either w_{1} or w_{2}.
2. Eve creates the set

$$
A=\left\{G(x): x \in\{0,1\}^{n}\right\}
$$

(This takes Exponential Time!)
3. If $w_{2} \notin A$ then Eve outputs w_{2} and she is right!
4. If $w_{1} \notin A$ then Eve outputs w_{1} and she is right!
5. If $w_{1}, w_{2} \in A$ then Eve outputs w_{1}. She might be wrong.

Prob that Eve loses is \leq Prob that $z \in A$.

Eve Wins with prob $>\frac{1}{2}$ with Unlimited Comp

Eve's strategy:

1. Eve gets as input $w_{1}, w_{2} . z$ is either w_{1} or w_{2}.
2. Eve creates the set

$$
A=\left\{G(x): x \in\{0,1\}^{n}\right\}
$$

(This takes Exponential Time!)
3. If $w_{2} \notin A$ then Eve outputs w_{2} and she is right!
4. If $w_{1} \notin A$ then Eve outputs w_{1} and she is right!
5. If $w_{1}, w_{2} \in A$ then Eve outputs w_{1}. She might be wrong.

Prob that Eve loses is \leq Prob that $z \in A$.
There are $2^{p(n)}$ strings that z could be. Only 2^{n} of them are in A.

Eve Wins with prob $>\frac{1}{2}$ with Unlimited Comp

Eve's strategy:

1. Eve gets as input $w_{1}, w_{2} . z$ is either w_{1} or w_{2}.
2. Eve creates the set

$$
A=\left\{G(x): x \in\{0,1\}^{n}\right\}
$$

(This takes Exponential Time!)
3. If $w_{2} \notin A$ then Eve outputs w_{2} and she is right!
4. If $w_{1} \notin A$ then Eve outputs w_{1} and she is right!
5. If $w_{1}, w_{2} \in A$ then Eve outputs w_{1}. She might be wrong.

Prob that Eve loses is \leq Prob that $z \in A$.
There are $2^{p(n)}$ strings that z could be. Only 2^{n} of them are in A.
Prob Eve loses is \leq prob $z \in A$ which is $\frac{2^{n}}{2^{p(n)}}=\frac{1}{2^{p(n)-n}}<\frac{1}{2}$.

Psuedo Random Only Needs to Fool Poly Time Eve

Psuedo Random Only Needs to Fool Poly Time Eve

1. In our def of PRG we will give Eve only poly time.

Psuedo Random Only Needs to Fool Poly Time Eve

1. In our def of PRG we will give Eve only poly time.
2. We will allow Eve to use randomization.

Psuedo Random Only Needs to Fool Poly Time Eve

1. In our def of PRG we will give Eve only poly time.
2. We will allow Eve to use randomization.
3. We will even allow Eve to be right $>\frac{1}{2}$ of the time, but not much bigger.

Definitions Needed For PRG

Definitions Needed For PRG

1. A function $f: \mathbb{Z}^{+} \rightarrow[0,1]$ is negligible if, for every poly p, for large $n, f(n)<\frac{1}{p(n)}$. We use neg. Example $f(n)=\frac{1}{2^{n}}$

Definitions Needed For PRG

1. A function $f: \mathbb{Z}^{+} \rightarrow[0,1]$ is negligible if, for every poly p, for large $n, f(n)<\frac{1}{p(n)}$. We use neg. Example $f(n)=\frac{1}{2^{n}}$
2. An algorithm is Poly Prob Time (PPT) if there is a randomized alg for it that halts in poly time and has a neg prob of error. Example Primality.

Formal Definition of PRGs (Finally!)

Def G is a PRG if for all PPT Eves, there is a neg function $\epsilon(n)$ such that

$$
\operatorname{Pr}[\text { Eve Wins }] \leq \frac{1}{2}+\epsilon(\mathbf{n})
$$

Candidate for a PRG

Candidate for a PRG

1. Input $b \in\{0,1\}^{n}$.

Candidate for a PRG

1. Input $b \in\{0,1\}^{n}$.
2. Find p, be the first safe prime $\geq 1 b$.

Candidate for a PRG

1. Input $b \in\{0,1\}^{n}$.
2. Find p, be the first safe prime $\geq 1 b$.
3. Find g, the smallest generator of of \mathbb{Z}_{p}^{*}. Note that \mathbb{Z}_{p}^{*} has $\sim 2^{n}$ elements and every element of it can be viewed as an n-bit string.

Candidate for a PRG

1. Input $b \in\{0,1\}^{n}$.
2. Find p, be the first safe prime $\geq 1 b$.
3. Find g, the smallest generator of of \mathbb{Z}_{p}^{*}. Note that \mathbb{Z}_{p}^{*} has $\sim 2^{n}$ elements and every element of it can be viewed as an n-bit string.
4. Compute $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ all $\bmod p$.

Candidate for a PRG

1. Input $b \in\{0,1\}^{n}$.
2. Find p, be the first safe prime $\geq 1 b$.
3. Find g, the smallest generator of of \mathbb{Z}_{p}^{*}. Note that \mathbb{Z}_{p}^{*} has $\sim 2^{n}$ elements and every element of it can be viewed as an n-bit string.
4. Compute $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ all $\bmod p$.
5. View $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ as n-bit strings.

Candidate for a PRG

1. Input $b \in\{0,1\}^{n}$.
2. Find p, be the first safe prime $\geq 1 b$.
3. Find g, the smallest generator of of \mathbb{Z}_{p}^{*}. Note that \mathbb{Z}_{p}^{*} has $\sim 2^{n}$ elements and every element of it can be viewed as an n-bit string.
4. Compute $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ all $\bmod p$.
5. View $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ as n-bit strings.
6. Let b_{i} be the right-most-bit of g^{i}.

Candidate for a PRG

1. Input $b \in\{0,1\}^{n}$.
2. Find p, be the first safe prime $\geq 1 b$.
3. Find g, the smallest generator of of \mathbb{Z}_{p}^{*}. Note that \mathbb{Z}_{p}^{*} has $\sim 2^{n}$ elements and every element of it can be viewed as an n-bit string.
4. Compute $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ all $\bmod p$.
5. View $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ as n-bit strings.
6. Let b_{i} be the right-most-bit of g^{i}.
7. Output $b_{1} b_{2} \cdots b_{n^{2}}$

Candidate for a PRG

1. Input $b \in\{0,1\}^{n}$.
2. Find p, be the first safe prime $\geq 1 b$.
3. Find g, the smallest generator of of \mathbb{Z}_{p}^{*}. Note that \mathbb{Z}_{p}^{*} has $\sim 2^{n}$ elements and every element of it can be viewed as an n-bit string.
4. Compute $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ all $\bmod p$.
5. View $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ as n-bit strings.
6. Let b_{i} be the right-most-bit of g^{i}.
7. Output $b_{1} b_{2} \cdots b_{n^{2}}$

Not known if this is really PRG.

Candidate for a PRG

1. Input $b \in\{0,1\}^{n}$.
2. Find p, be the first safe prime $\geq 1 b$.
3. Find g, the smallest generator of of \mathbb{Z}_{p}^{*}. Note that \mathbb{Z}_{p}^{*} has $\sim 2^{n}$ elements and every element of it can be viewed as an n-bit string.
4. Compute $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ all $\bmod p$.
5. View $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ as n-bit strings.
6. Let b_{i} be the right-most-bit of g^{i}.
7. Output $b_{1} b_{2} \cdots b_{n^{2}}$

Not known if this is really PRG.
But assuming Discrete Log is hard

Candidate for a PRG

1. Input $b \in\{0,1\}^{n}$.
2. Find p, be the first safe prime $\geq 1 b$.
3. Find g, the smallest generator of of \mathbb{Z}_{p}^{*}. Note that \mathbb{Z}_{p}^{*} has $\sim 2^{n}$ elements and every element of it can be viewed as an n-bit string.
4. Compute $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ all $\bmod p$.
5. View $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ as n-bit strings.
6. Let b_{i} be the right-most-bit of g^{i}.
7. Output $b_{1} b_{2} \cdots b_{n^{2}}$

Not known if this is really PRG.
But assuming Discrete Log is hard still not known!

Candidate for a PRG

1. Input $b \in\{0,1\}^{n}$.
2. Find p, be the first safe prime $\geq 1 b$.
3. Find g, the smallest generator of of \mathbb{Z}_{p}^{*}. Note that \mathbb{Z}_{p}^{*} has $\sim 2^{n}$ elements and every element of it can be viewed as an n-bit string.
4. Compute $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ all $\bmod p$.
5. View $\left(g^{1}, g^{2}, \ldots, g^{n^{2}}\right)$ as n-bit strings.
6. Let b_{i} be the right-most-bit of g^{i}.
7. Output $b_{1} b_{2} \cdots b_{n^{2}}$

Not known if this is really PRG.
But assuming Discrete Log is hard still not known!
But thought to be PRG.

Do PRGs exist?

Do PRGs exist?

1. We don't know

Do PRGs exist?

1. We don't know ... Would imply $\mathrm{P} \neq \mathrm{NP}$.

Do PRGs exist?

1. We don't know ... Would imply $P \neq N P$.
2. People assume certain functions are PRGs.

Do PRGs exist?

1. We don't know ... Would imply $P \neq N P$.
2. People assume certain functions are PRGs.
3. Can construct PRGs from weaker assumptions. (We will not do this.)

Pseudo One-Time Pad

Let G be a PRG from $\{0,1\}^{n}$ to $\{0,1\}^{p(n)}$.

Pseudo One-Time Pad

Let G be a PRG from $\{0,1\}^{n}$ to $\{0,1\}^{p(n)}$.

1. Psuedo One-Time Pad:

Pseudo One-Time Pad

Let G be a PRG from $\{0,1\}^{n}$ to $\{0,1\}^{p(n)}$.

1. Psuedo One-Time Pad:
2. Alice generates an n-bit string k, n truely random bits.

Pseudo One-Time Pad

Let G be a PRG from $\{0,1\}^{n}$ to $\{0,1\}^{p(n)}$.

1. Psuedo One-Time Pad:
2. Alice generates an n-bit string k, n truely random bits.
3. Alice computer $G(k)=k^{\prime}, p(n)$ psuedo-random bits.

Pseudo One-Time Pad

Let G be a PRG from $\{0,1\}^{n}$ to $\{0,1\}^{p(n)}$.

1. Psuedo One-Time Pad:
2. Alice generates an n-bit string k, n truely random bits.
3. Alice computer $G(k)=k^{\prime}, p(n)$ psuedo-random bits.
4. Alice and Bob use k^{\prime} for their 1-time pad.

One Time-Pad/Psuedo One-Time Pad

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.

One Time-Pad/Psuedo One-Time Pad

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure. PRO Info-Theoretic Secure.

One Time-Pad/Psuedo One-Time Pad

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.
PRO Info-Theoretic Secure.
CON Generating truly random bits is hard.

One Time-Pad/Psuedo One-Time Pad

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.
PRO Info-Theoretic Secure.
CON Generating truly random bits is hard.
Used This really has been used, but only for short messages where security is crucial. The US-Russia Red Phone.

One Time-Pad/Psuedo One-Time Pad

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.
PRO Info-Theoretic Secure.
CON Generating truly random bits is hard.
Used This really has been used, but only for short messages where security is crucial. The US-Russia Red Phone.

Psuedo One-Time Pad One can define Comp-theoretic security rigorously. With that definition, one can show that the Psuedo One-Time Pad is comp-theoretic secure.

One Time-Pad/Psuedo One-Time Pad

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.
PRO Info-Theoretic Secure.
CON Generating truly random bits is hard.
Used This really has been used, but only for short messages where security is crucial. The US-Russia Red Phone.

Psuedo One-Time Pad One can define Comp-theoretic security rigorously. With that definition, one can show that the Psuedo
One-Time Pad is comp-theoretic secure.
PRO Comp-Theoretic Secure.

One Time-Pad/Psuedo One-Time Pad

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.
PRO Info-Theoretic Secure.
CON Generating truly random bits is hard.
Used This really has been used, but only for short messages where security is crucial. The US-Russia Red Phone.

Psuedo One-Time Pad One can define Comp-theoretic security rigorously. With that definition, one can show that the Psuedo
One-Time Pad is comp-theoretic secure.
PRO Comp-Theoretic Secure.
CON Proving that G is a PRG is hard.

One Time-Pad/Psuedo One-Time Pad

One-Time Pad One can define info-theoretic security rigorously. With that definition, one can show that the One-Time Pad is info-theoretic secure.
PRO Info-Theoretic Secure.
CON Generating truly random bits is hard.
Used This really has been used, but only for short messages where security is crucial. The US-Russia Red Phone.

Psuedo One-Time Pad One can define Comp-theoretic security rigorously. With that definition, one can show that the Psuedo
One-Time Pad is comp-theoretic secure.
PRO Comp-Theoretic Secure.
CON Proving that G is a PRG is hard.
Used This is used, but with functions G that seem like PRGs but there is no proof of that.

One Time-Pad/Psuedo One-Time Pad

Both One-Time Pad and Psuedo One-Time Pad have a problem for usage:

One Time-Pad/Psuedo One-Time Pad

Both One-Time Pad and Psuedo One-Time Pad have a problem for usage:

Once the block of bits runs out, you can't communicate anymore!

One Time-Pad/Psuedo One-Time Pad

Both One-Time Pad and Psuedo One-Time Pad have a problem for usage:

Once the block of bits runs out, you can't communicate anymore!

Hence, rather than use either One-Time Pads or Psuedo One-Time Pads, we use

One Time-Pad/Psuedo One-Time Pad

Both One-Time Pad and Psuedo One-Time Pad have a problem for usage:

Once the block of bits runs out, you can't communicate anymore!

Hence, rather than use either One-Time Pads or Psuedo One-Time Pads, we use

Stream Ciphers

One Time-Pad/Psuedo One-Time Pad

Both One-Time Pad and Psuedo One-Time Pad have a problem for usage:

Once the block of bits runs out, you can't communicate anymore!

Hence, rather than use either One-Time Pads or Psuedo One-Time Pads, we use

Stream Ciphers

which is the next lecture.

