BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Low e Attacks on RSA

Chinese Remainder Theorem: N_{1}, N_{2} Case

Chinese Remainder Theorem: N_{1}, N_{2} Case

1. Input a, b, N_{1}, N_{2}, with N_{1}, N_{2}, rel prime. Want

$$
\begin{aligned}
& 0 \leq x<N_{1} N_{2}: \\
& x \equiv a\left(\bmod N_{1}\right) \\
& x \equiv b\left(\bmod N_{2}\right)
\end{aligned}
$$

Chinese Remainder Theorem: N_{1}, N_{2} Case

1. Input a, b, N_{1}, N_{2}, with N_{1}, N_{2}, rel prime. Want

$$
\begin{aligned}
& 0 \leq x<N_{1} N_{2}: \\
& x \equiv a\left(\bmod N_{1}\right) \\
& x \equiv b\left(\bmod N_{2}\right)
\end{aligned}
$$

2. Find the inverse of $N_{1} \bmod N_{2}$ and denote this N_{1}^{-1}.

Chinese Remainder Theorem: N_{1}, N_{2} Case

1. Input a, b, N_{1}, N_{2}, with N_{1}, N_{2}, rel prime. Want

$$
\begin{aligned}
& 0 \leq x<N_{1} N_{2}: \\
& x \equiv a\left(\bmod N_{1}\right) \\
& x \equiv b\left(\bmod N_{2}\right)
\end{aligned}
$$

2. Find the inverse of $N_{1} \bmod N_{2}$ and denote this N_{1}^{-1}.
3. Find the inverse of $N_{2} \bmod N_{1}$ and denote this N_{2}^{-1}.

Chinese Remainder Theorem: N_{1}, N_{2} Case

1. Input a, b, N_{1}, N_{2}, with N_{1}, N_{2}, rel prime. Want

$$
\begin{aligned}
& 0 \leq x<N_{1} N_{2}: \\
& x \equiv a\left(\bmod N_{1}\right) \\
& x \equiv b\left(\bmod N_{2}\right)
\end{aligned}
$$

2. Find the inverse of $N_{1} \bmod N_{2}$ and denote this N_{1}^{-1}.
3. Find the inverse of $N_{2} \bmod N_{1}$ and denote this N_{2}^{-1}.
4. $y=b N_{1}^{-1} N_{1}+a N_{2}^{-1} N_{2}$
$\operatorname{Mod} N_{1}: 1$ st term is 0,2 nd term is a. So $y \equiv a\left(\bmod N_{1}\right)$.
$\operatorname{Mod} N_{2}: 2$ nd term is 0,1 st term is b. So $y \equiv b\left(\bmod N_{2}\right)$.

Chinese Remainder Theorem: N_{1}, N_{2} Case

1. Input a, b, N_{1}, N_{2}, with N_{1}, N_{2}, rel prime. Want

$$
\begin{aligned}
& 0 \leq x<N_{1} N_{2}: \\
& x \equiv a\left(\bmod N_{1}\right) \\
& x \equiv b\left(\bmod N_{2}\right)
\end{aligned}
$$

2. Find the inverse of $N_{1} \bmod N_{2}$ and denote this N_{1}^{-1}.
3. Find the inverse of $N_{2} \bmod N_{1}$ and denote this N_{2}^{-1}.
4. $y=b N_{1}^{-1} N_{1}+a N_{2}^{-1} N_{2}$
$\operatorname{Mod} N_{1}: 1$ st term is $0,2 n d$ term is a. So $y \equiv a\left(\bmod N_{1}\right)$.
$\operatorname{Mod} N_{2}: 2$ nd term is 0,1 st term is b. So $y \equiv b\left(\bmod N_{2}\right)$.
5. $x \equiv y\left(\bmod N_{1} N_{2}\right)$. (Convention that $\left.0 \leq x<N_{1} N_{2}\right)$

The e Theorem, N_{1}, N_{2} case

Theorem: Assume N_{1}, N_{2} are rel prime, $e, m \in \mathbb{N}$. Let $0 \leq x<N_{1} N_{2}$ be the number from CRT such that $x \equiv m^{e}\left(\bmod N_{1}\right)$
$x \equiv m^{e}\left(\bmod N_{2}\right)$
Then $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$. IF $m^{e}<N_{1} N_{2}$ then $x=m^{e}$.

The e Theorem, N_{1}, N_{2} case

Theorem: Assume N_{1}, N_{2} are rel prime, $e, m \in \mathbb{N}$. Let
$0 \leq x<N_{1} N_{2}$ be the number from CRT such that
$x \equiv m^{e}\left(\bmod N_{1}\right)$
$x \equiv m^{e}\left(\bmod N_{2}\right)$
Then $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$. IF $m^{e}<N_{1} N_{2}$ then $x=m^{e}$.
Proof: There exists k_{1}, k_{2} such that
$x=m^{e}+k_{1} N_{1} \quad k_{1} \in \mathbb{Z}$, (Could be negative)
$x=m^{e}+k_{2} N_{2} \quad k_{2} \in \mathbb{Z}$, (Could be negative)

The e Theorem, N_{1}, N_{2} case

Theorem: Assume N_{1}, N_{2} are rel prime, $e, m \in \mathbb{N}$. Let
$0 \leq x<N_{1} N_{2}$ be the number from CRT such that
$x \equiv m^{e}\left(\bmod N_{1}\right)$
$x \equiv m^{e}\left(\bmod N_{2}\right)$
Then $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$. IF $m^{e}<N_{1} N_{2}$ then $x=m^{e}$.
Proof: There exists k_{1}, k_{2} such that
$x=m^{e}+k_{1} N_{1} \quad k_{1} \in \mathbb{Z}$, (Could be negative)
$x=m^{e}+k_{2} N_{2} \quad k_{2} \in \mathbb{Z}$, (Could be negative)
$k_{1} N_{1}=k_{2} N_{2}$. Since N_{1}, N_{2} rel prime, N_{1} divides k_{2}, so $k_{2}=k N_{1}$.

The e Theorem, N_{1}, N_{2} case

Theorem: Assume N_{1}, N_{2} are rel prime, $e, m \in \mathbb{N}$. Let
$0 \leq x<N_{1} N_{2}$ be the number from CRT such that
$x \equiv m^{e}\left(\bmod N_{1}\right)$
$x \equiv m^{e}\left(\bmod N_{2}\right)$
Then $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$. IF $m^{e}<N_{1} N_{2}$ then $x=m^{e}$.
Proof: There exists k_{1}, k_{2} such that
$x=m^{e}+k_{1} N_{1} \quad k_{1} \in \mathbb{Z}$, (Could be negative)
$x=m^{e}+k_{2} N_{2} \quad k_{2} \in \mathbb{Z}$, (Could be negative)
$k_{1} N_{1}=k_{2} N_{2}$. Since N_{1}, N_{2} rel prime, N_{1} divides k_{2}, so $k_{2}=k N_{1}$.
$x=m^{e}+k N_{1} N_{2}$. Hence $x \equiv m^{e}\left(\bmod N_{1} N_{2}\right)$.
If $m^{e}<N_{1} N_{2}$ then since $0 \leq x<N_{1} N_{2} \& x \equiv m^{e}, x=m^{e}$.

Using CRT to find $m: N_{1}, N_{2}$ Case

Theorem: Assume N_{1}, N_{2} are rel prime, $e, m \in \mathbb{N}$, $e=2$, and $m<N_{1}, N_{2}$. Assume you are given, x_{1}, x_{2} such that $m^{2} \equiv x_{1}\left(\bmod N_{1}\right)$ $m^{2} \equiv x_{2}\left(\bmod N_{2}\right)$.
(you are NOT given m). Then you can find m.

Using CRT to find $m: N_{1}, N_{2}$ Case

Theorem: Assume N_{1}, N_{2} are rel prime, $e, m \in \mathbb{N}, e=2$, and $m<N_{1}, N_{2}$. Assume you are given, x_{1}, x_{2} such that $m^{2} \equiv x_{1}\left(\bmod N_{1}\right)$
$m^{2} \equiv x_{2}\left(\bmod N_{2}\right)$.
(you are NOT given m). Then you can find m.
Proof: Use CRT to find x such that

$$
\begin{array}{ll}
x \equiv x_{1} & \left(\bmod N_{1}\right) \\
x \equiv x_{2} & \left(\bmod N_{2}\right)
\end{array}
$$

and $0 \leq x<N_{1} N_{2}$.
Since $m<N_{1}, N_{2}, m^{2}<N_{1} N_{2}$.
Hence x is a square root in \mathbb{N}. Take the square root to find m.
End of Proof
Note In $e=2, m<N_{1} N_{2}$ case can crack RSA without factoring!

Generalize this Attack

The attack can be generalized to N_{1}, \ldots, N_{L}. This IS in these slides but we are pressed for time so will skip in lecture.

Advice for Zelda When She Uses RSA

Zelda will use RSA with people A_{1}, \ldots, A_{L}.
Zelda is sending messages to A_{i} using ($N_{i}=p_{i} q_{i}, e_{i}$)

Advice for Zelda When She Uses RSA

Zelda will use RSA with people A_{1}, \ldots, A_{L}.
Zelda is sending messages to A_{i} using ($N_{i}=p_{i} q_{i}, e_{i}$)

1. Make all of the e_{i} 's different

Advice for Zelda When She Uses RSA

Zelda will use RSA with people A_{1}, \ldots, A_{L}.
Zelda is sending messages to A_{i} using ($N_{i}=p_{i} q_{i}, e_{i}$)

1. Make all of the e_{i} 's different
2. Make all of the N_{i} 's different.

Advice for Zelda When She Uses RSA

Zelda will use RSA with people A_{1}, \ldots, A_{L}.
Zelda is sending messages to A_{i} using ($N_{i}=p_{i} q_{i}, e_{i}$)

1. Make all of the e_{i} 's different
2. Make all of the N_{i} 's different.
3. Randomly pad m for NY,NY problem.

Advice for Zelda When She Uses RSA

Zelda will use RSA with people A_{1}, \ldots, A_{L}.
Zelda is sending messages to A_{i} using ($N_{i}=p_{i} q_{i}, e_{i}$)

1. Make all of the e_{i} 's different
2. Make all of the N_{i} 's different.
3. Randomly pad m for NY,NY problem.
4. Randomly pad time to ward off timing attacks.

BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!

