BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Low *e* Attacks on RSA

<ロト < 団 > < 臣 > < 臣 > 三 の < で</p>

1. Input a, b, N_1, N_2 , with N_1, N_2 , rel prime. Want $0 \le x < N_1 N_2$: $x \equiv a \pmod{N_1}$ $x \equiv b \pmod{N_2}$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- 1. Input a, b, N_1 , N_2 , with N_1 , N_2 , rel prime. Want $0 \le x < N_1 N_2$: $x \equiv a \pmod{N_1}$ $x \equiv b \pmod{N_2}$
- 2. Find the inverse of N_1 mod N_2 and denote this N_1^{-1} .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. Input a, b, N_1, N_2 , with N_1, N_2 , rel prime. Want $0 \le x < N_1 N_2$: $x \equiv a \pmod{N_1}$ $x \equiv b \pmod{N_2}$
- 2. Find the inverse of N_1 mod N_2 and denote this N_1^{-1} .
- 3. Find the inverse of N_2 mod N_1 and denote this N_2^{-1} .

ション ふゆ アメリア メリア しょうくしゃ

- 1. Input a, b, N_1, N_2 , with N_1, N_2 , rel prime. Want $0 \le x < N_1 N_2$: $x \equiv a \pmod{N_1}$ $x \equiv b \pmod{N_2}$
- 2. Find the inverse of $N_1 \mod N_2$ and denote this N_1^{-1} .
- 3. Find the inverse of N_2 mod N_1 and denote this N_2^{-1} .

4.
$$y = bN_1^{-1}N_1 + aN_2^{-1}N_2$$

Mod N_1 : 1st term is 0, 2nd term is a. So $y \equiv a \pmod{N_1}$. Mod N_2 : 2nd term is 0, 1st term is b. So $y \equiv b \pmod{N_2}$.

- 1. Input a, b, N_1, N_2 , with N_1, N_2 , rel prime. Want $0 \le x < N_1 N_2$: $x \equiv a \pmod{N_1}$ $x \equiv b \pmod{N_2}$
- 2. Find the inverse of $N_1 \mod N_2$ and denote this N_1^{-1} .
- 3. Find the inverse of N_2 mod N_1 and denote this N_2^{-1} .

4.
$$y = bN_1^{-1}N_1 + aN_2^{-1}N_2$$

Mod N_1 : 1st term is 0, 2nd term is a. So $y \equiv a \pmod{N_1}$. Mod N_2 : 2nd term is 0, 1st term is b. So $y \equiv b \pmod{N_2}$.

5. $x \equiv y \pmod{N_1 N_2}$. (Convention that $0 \le x < N_1 N_2$)

Theorem: Assume N_1 , N_2 are rel prime, $e, m \in \mathbb{N}$. Let $0 \le x < N_1 N_2$ be the number from CRT such that $x \equiv m^e \pmod{N_1}$ $x \equiv m^e \pmod{N_2}$ Then $x \equiv m^e \pmod{N_1 N_2}$. IF $m^e < N_1 N_2$ then $x = m^e$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Theorem: Assume N_1, N_2 are rel prime, $e, m \in \mathbb{N}$. Let $0 \le x < N_1N_2$ be the number from CRT such that $x \equiv m^e \pmod{N_1}$ $x \equiv m^e \pmod{N_2}$ Then $x \equiv m^e \pmod{N_1N_2}$. **IF** $m^e < N_1N_2$ then $x = m^e$. **Proof:** There exists k_1, k_2 such that $x = m^e + k_1N_1$ $k_1 \in \mathbb{Z}$, (Could be negative) $x = m^e + k_2N_2$ $k_2 \in \mathbb{Z}$, (Could be negative)

Theorem: Assume N_1 , N_2 are rel prime, $e, m \in \mathbb{N}$. Let $0 \le x < N_1 N_2$ be the number from CRT such that $x \equiv m^e \pmod{N_1}$ $x \equiv m^e \pmod{N_2}$ Then $x \equiv m^e \pmod{N_1 N_2}$. **IF** $m^e < N_1 N_2$ then $x = m^e$. **Proof:** There exists k_1, k_2 such that $x = m^e + k_1 N_1$ $k_1 \in \mathbb{Z}$, (Could be negative) $x = m^e + k_2 N_2$ $k_2 \in \mathbb{Z}$, (Could be negative)

 $k_1N_1 = k_2N_2$. Since N_1, N_2 rel prime, N_1 divides k_2 , so $k_2 = kN_1$.

Theorem: Assume N_1, N_2 are rel prime, $e, m \in \mathbb{N}$. Let $0 \le x < N_1 N_2$ be the number from CRT such that $x \equiv m^e \pmod{N_1}$ $x \equiv m^{e} \pmod{N_2}$ Then $x \equiv m^e \pmod{N_1 N_2}$. IF $m^e < N_1 N_2$ then $x = m^e$. **Proof:** There exists k_1, k_2 such that $x = m^e + k_1 N_1$ $k_1 \in \mathbb{Z}$, (Could be negative) $x = m^e + k_2 N_2$ $k_2 \in \mathbb{Z}$, (Could be negative) $k_1 N_1 = k_2 N_2$. Since N_1, N_2 rel prime, N_1 divides k_2 , so $k_2 = k N_1$. $x = m^e + kN_1N_2$. Hence $x \equiv m^e \pmod{N_1N_2}$. If $m^e < N_1 N_2$ then since $0 < x < N_1 N_2$ & $x \equiv m^e$, $x = m^e$.

Using CRT to find $m: N_1, N_2$ Case

Theorem: Assume N_1, N_2 are rel prime, $e, m \in \mathbb{N}$, e = 2, and $m < N_1, N_2$. Assume you are given, x_1, x_2 such that $m^2 \equiv x_1 \pmod{N_1}$ $m^2 \equiv x_2 \pmod{N_2}$. (you are NOT given m). Then you can find m.

Using CRT to find $m: N_1, N_2$ Case

Theorem: Assume N_1 , N_2 are rel prime, $e, m \in \mathbb{N}$, e = 2, and $m < N_1$, N_2 . Assume you are given, x_1, x_2 such that $m^2 \equiv x_1 \pmod{N_1}$ $m^2 \equiv x_2 \pmod{N_2}$. (you are NOT given m). Then you can find m. **Proof:** Use CRT to find x such that

 $\begin{array}{ll} x \equiv x_1 & \pmod{N_1} \\ x \equiv x_2 & \pmod{N_2} \end{array}$

and $0 \le x < N_1N_2$. Since $m < N_1, N_2, m^2 < N_1N_2$. Hence x is a square root in \mathbb{N} . Take the square root to find m. End of Proof

Note In e = 2, $m < N_1 N_2$ case can crack RSA without factoring!

Generalize this Attack

The attack can be generalized to N_1, \ldots, N_L . This IS in these slides but we are pressed for time so will skip in lecture.

Zelda will use RSA with people A_1, \ldots, A_L . Zelda is sending messages to A_i using $(N_i = p_i q_i, e_i)$

Zelda will use RSA with people A_1, \ldots, A_L . Zelda is sending messages to A_i using $(N_i = p_i q_i, e_i)$

1. Make all of the e_i 's different

Zelda will use RSA with people A_1, \ldots, A_L . Zelda is sending messages to A_i using $(N_i = p_i q_i, e_i)$

- 1. Make all of the e_i 's different
- 2. Make all of the N_i 's different.

Zelda will use RSA with people A_1, \ldots, A_L . Zelda is sending messages to A_i using $(N_i = p_i q_i, e_i)$

ション ふゆ アメリア メリア しょうくしゃ

- 1. Make all of the e_i 's different
- 2. Make all of the N_i 's different.
- 3. Randomly pad m for NY,NY problem.

Zelda will use RSA with people A_1, \ldots, A_L . Zelda is sending messages to A_i using $(N_i = p_i q_i, e_i)$

- 1. Make all of the e_i 's different
- 2. Make all of the N_i 's different.
- 3. Randomly pad m for NY,NY problem.
- 4. Randomly pad time to ward off timing attacks.

ション ふゆ アメリア メリア しょうくしゃ

BILL, STOP RECORDING LECTURE!!!!

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

BILL STOP RECORDING LECTURE!!!