BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Public Key LWE Cipher

Notation We Will Need

$e \in^{r} A$ means that e is picked unif at random from the set A.

Notation We Will Need

$e \in^{r} A$ means that e is picked unif at random from the set A.
We will pick our error uniformily.

Notation We Will Need

$e \in^{r} A$ means that e is picked unif at random from the set A.
We will pick our error uniformily.
When LWE is really used they pick the error with a Gaussian around 0 .

Notation We Will Need

$e \in^{r} A$ means that e is picked unif at random from the set A.
We will pick our error uniformily.
When LWE is really used they pick the error with a Gaussian around 0 .

We are doing it in a way that is INCORRECT but BETTER FOR EDUCATION.

Noisy Equations

Everything is $\bmod p$, some prime p.

Noisy Equations

Everything is $\bmod p$, some prime p.
Let $\vec{k}=\left(k_{1}, \ldots, k_{n}\right), \vec{r}=\left(r_{1}, \ldots, r_{n}\right)$, and C be such that

$$
r_{1} k_{1}+\cdots+r_{n} k_{n}=C
$$

Noisy Equations

Everything is $\bmod p$, some prime p.
Let $\vec{k}=\left(k_{1}, \ldots, k_{n}\right), \vec{r}=\left(r_{1}, \ldots, r_{n}\right)$, and C be such that

$$
r_{1} k_{1}+\cdots+r_{n} k_{n}=C
$$

$r_{1} x_{1}+\cdots+r_{n} x_{n}=C$ is an equation that \vec{k} satisfies.

Noisy Equations

Everything is $\bmod p$, some prime p.
Let $\vec{k}=\left(k_{1}, \ldots, k_{n}\right), \vec{r}=\left(r_{1}, \ldots, r_{n}\right)$, and C be such that

$$
r_{1} k_{1}+\cdots+r_{n} k_{n}=C
$$

$r_{1} x_{1}+\cdots+r_{n} x_{n}=C$ is an equation that \vec{k} satisfies.
Pick $e \in^{r}\{-\gamma, \ldots, \gamma\}$. Think of γ as small. $r_{1} x_{1}+\cdots+r_{n} x_{n} \sim C+e$ is noisy eq that \vec{k} satisfies.

Noisy Equations

Everything is $\bmod p$, some prime p.
Let $\vec{k}=\left(k_{1}, \ldots, k_{n}\right), \vec{r}=\left(r_{1}, \ldots, r_{n}\right)$, and C be such that

$$
r_{1} k_{1}+\cdots+r_{n} k_{n}=C
$$

$r_{1} x_{1}+\cdots+r_{n} x_{n}=C$ is an equation that \vec{k} satisfies.
Pick $e \in^{r}\{-\gamma, \ldots, \gamma\}$. Think of γ as small.

$$
r_{1} x_{1}+\cdots+r_{n} x_{n} \sim C+e \text { is noisy eq that } \vec{k} \text { satisfies. }
$$

Say \vec{k} satisfies the noisy equations

$$
\begin{aligned}
& r_{1} x_{1}+\cdots+r_{n} x_{n} \sim C_{1}+e_{1} \\
& s_{1} x_{1}+\cdots+s_{n} x_{n} \sim C_{2}+e_{2}
\end{aligned}
$$

Then \vec{k} satisfy the sum:

$$
\left(r_{1}+s_{1}\right) x_{1}+\cdots+\left(r_{k}+s_{k}\right) x_{k} \sim C_{1}+C_{2}+e_{1}+e_{2}
$$

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$.

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$. Alice Wants to Enable Bob to Send $b \in\{0,1\}$.

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$. Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$.

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$. Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$. She picks 4 rand \vec{r}. $(4,9,1,89),(9,98,8,1),(44,55,10,8),(9,3,11,99)$.

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$. Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$. She picks 4 rand \vec{r}. $(4,9,1,89),(9,98,8,1),(44,55,10,8),(9,3,11,99)$. She picks 4 random $e \in\{-1,0,1\}: 1,-1,0,1$.

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$.
Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$. She picks 4 rand \vec{r}. $(4,9,1,89),(9,98,8,1),(44,55,10,8),(9,3,11,99)$.
She picks 4 random $e \in\{-1,0,1\}: 1,-1,0,1$.
She forms 4 noisy eqs which have $(1,10,21,89)$ as "answer."

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$.
Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$. She picks 4 rand \vec{r}. $(4,9,1,89),(9,98,8,1),(44,55,10,8),(9,3,11,99)$.
She picks 4 random $e \in\{-1,0,1\}: 1,-1,0,1$. She forms 4 noisy eqs which have $(1,10,21,89)$ as "answer."

$$
\begin{gathered}
4 k_{1}+9 k_{2}+21 k_{3}+89 k_{4} \equiv 84 \\
9 k_{1}+98 k_{2}+8 k_{3}+k_{4} \equiv 99 \\
44 k_{1}+558 k_{2}+10 k_{3}+8 k_{4} \equiv 179 \\
9 k_{1}+3 k_{2}+11 k_{3}+99 k_{4} \equiv 105
\end{gathered}
$$

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$. Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$. She picks 4 rand \vec{r}. $(4,9,1,89),(9,98,8,1),(44,55,10,8),(9,3,11,99)$.
She picks 4 random $e \in\{-1,0,1\}: 1,-1,0,1$. She forms 4 noisy eqs which have $(1,10,21,89)$ as "answer."

$$
\begin{gathered}
4 k_{1}+9 k_{2}+21 k_{3}+89 k_{4} \equiv 84 \\
9 k_{1}+98 k_{2}+8 k_{3}+k_{4} \equiv 99 \\
44 k_{1}+558 k_{2}+10 k_{3}+8 k_{4} \equiv 179 \\
9 k_{1}+3 k_{2}+11 k_{3}+99 k_{4} \equiv 105
\end{gathered}
$$

These equations are published.

Example of Setting Up The LWE-Public Cipher

Public Info Prime: 191. Length of Vector: 4. Error: $\{-1,0,1\}$.
Alice Wants to Enable Bob to Send $\boldsymbol{b} \in\{0,1\}$.

1. She picks rand: $(1,10,21,89)$. She picks 4 rand \vec{r}. $(4,9,1,89),(9,98,8,1),(44,55,10,8),(9,3,11,99)$.
She picks 4 random $e \in\{-1,0,1\}: 1,-1,0,1$.
She forms 4 noisy eqs which have $(1,10,21,89)$ as "answer."

$$
\begin{gathered}
4 k_{1}+9 k_{2}+21 k_{3}+89 k_{4} \equiv 84 \\
9 k_{1}+98 k_{2}+8 k_{3}+k_{4} \equiv 99 \\
44 k_{1}+558 k_{2}+10 k_{3}+8 k_{4} \equiv 179 \\
9 k_{1}+3 k_{2}+11 k_{3}+99 k_{4} \equiv 105
\end{gathered}
$$

These equations are published.
Note Any sum of the eqs also has $(1,10,21,89)$ as "answer."

Bob Wants to Send a Bit

Bob wants to send bit 0 .

Bob Wants to Send a Bit

Bob wants to send bit 0 . Pick two of the equations, add them, and sends publicly:

Bob Wants to Send a Bit

Bob wants to send bit 0 . Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Bob Wants to Send a Bit

Bob wants to send bit 0 . Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Eve She sees this equation but does not know which equations were added to form this one.

Bob Wants to Send a Bit

Bob wants to send bit 0 . Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Eve She sees this equation but does not know which equations were added to form this one.
Alice She finds that $(1,10,21,99)$ is close to solution, so $b=0$.

Bob Wants to Send a Bit

Bob wants to send bit 0 . Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Eve She sees this equation but does not know which equations were added to form this one.
Alice She finds that $(1,10,21,99)$ is close to solution, so $b=0$.
Bob want to send bit 1.

Bob Wants to Send a Bit

Bob wants to send bit 0 . Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Eve She sees this equation but does not know which equations were added to form this one.
Alice She finds that $(1,10,21,99)$ is close to solution, so $b=0$.
Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 49
$$

Bob Wants to Send a Bit

Bob wants to send bit 0 .
Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Eve She sees this equation but does not know which equations were added to form this one.
Alice She finds that $(1,10,21,99)$ is close to solution, so $b=0$.
Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 49
$$

Eve She sees this equation but does not know which equations were added to form this one.

Bob Wants to Send a Bit

Bob wants to send bit 0 .
Pick two of the equations, add them, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 189
$$

Eve She sees this equation but does not know which equations were added to form this one.
Alice She finds that $(1,10,21,99)$ is close to solution, so $b=0$.
Bob want to send bit 1.
Pick two of the equations, add them, add 50, and sends publicly:

$$
13 k_{1}+12 k_{2}+32 k_{3}+188 k_{4} \equiv 49
$$

Eve She sees this equation but does not know which equations were added to form this one.
Alice She finds that $(1,10,21,99)$ is far from solution, so $b=1$.

LWE-Public: Security

Theorem If Eve can crack the LWE-public cipher then Eve can solve the LWE-problem. Note that this is the direction you want. (LWE equivalent to GAP-SVP which is thought to be hard.)

Theorem Worst Case is equivalent to Average Case.

BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!

