BILL, RECORD LECTURE!!!!
Other Topics I Could Have Covered
Other Classical

1. Playfair Cipher. This is a nice 2-sub cipher.
 PRO - Like Matrix, its 2-sub but in a nice way
 CON - Nothing in it that points to the future or to a lesson-learned.

2. Enigma Cipher used by Germany in WW II and broken by Britain lead by Alan Turing.
 PRO - This is an extreme version of Vigenere and there are some interesting things about how it was cracked.
 PRO - Brings up Alan Turing and interesting history and social history—and diversity issues.
 CON - Details on how they cracked it are too detailed.
Other Classical

1. Playfair Cipher. This is a nice 2-sub cipher.
Other Classical

1. Playfair Cipher. This is a nice 2-sub cipher.
 PRO - Like Matrix, its 2-sub but in a nice way
1. Playfair Cipher. This is a nice 2-sub cipher.
 PRO - Like Matrix, its 2-sub but in a nice way
 CON - Nothing in it that points to the future or to a lesson-learned.
Other Classical

1. Playfair Cipher. This is a nice 2-sub cipher.
 PRO - Like Matrix, its 2-sub but in a nice way
 CON - Nothing in it that points to the future or to a lesson-learned.

2. Enigma Cipher used by Germany in WW II and broken by Britain lead by Alan Turing.
1. Playfair Cipher. This is a nice 2-sub cipher.

PRO - Like Matrix, its 2-sub but in a nice way
CON - Nothing in it that points to the future or to a lesson-learned.

2. Enigma Cipher used by Germany in WW II and broken by Britain lead by Alan Turing.

PRO This is an extreme version of Vigenere and there are some interesting things about how it was cracked.
Other Classical

1. Playfair Cipher. This is a nice 2-sub cipher.
 PRO - Like Matrix, its 2-sub but in a nice way
 CON - Nothing in it that points to the future or to a lesson-learned.

2. Enigma Cipher used by Germany in WW II and broken by Britain lead by Alan Turing.
 PRO This is an extreme version of Vigenere and there are some interesting things about how it was cracked.
 PRO Brings up Alan Turing and interesting history and social history—and diversity issues.
Other Classical

1. Playfair Cipher. This is a nice 2-sub cipher.
 PRO - Like Matrix, its 2-sub but in a nice way
 CON - Nothing in it that points to the future or to a lesson-learned.

2. Enigma Cipher used by Germany in WW II and broken by Britain lead by Alan Turing.
 PRO This is an extreme version of Vigenere and there are some interesting things about how it was cracked.
 PRO Brings up Alan Turing and interesting history and social history—and diversity issues.
 CON Details on how they cracked it are too detailed.
Other Public Key

1. Rabin Enc, and variants: Cracking \equiv factoring.
 - **PRO**: Cracking EQUIV to factoring!
 - **CON**: Never used, Too slow.

2. Goldwasser-Micali Enc: Cracking \equiv SQRT mod pq.
 - **PRO**: Cracking EQUIV to a natural problem.
 - **CON**: Never used, Too Slow.
 - **NICK's CON**: Only transmits one friggin bit!

3. Blum-Goldwater Enc: Cracking \equiv Comp Secure PRG.
 - **PRO**: PRG's tie into other parts of the course
 - **PRO**: Uses Blum-Blum-Shub PRG. FUN to say Blum-Blum-Shub.
 - **NICK's CON**: Only transmits one friggin bit!
1. Rabin Enc, and variants: Cracking \equiv factoring.
Other Public Key

1. Rabin Enc, and variants: Cracking \equiv factoring.
 PRO Cracking EQUIV to factoring!
 CON Never used, Too slow.

2. Goldwasser-Micali Enc: Cracking \equiv \text{SQRT mod} \ pq.
 PRO Cracking EQUIV to a natural problem.
 CON Never used, Too Slow.

3. Blum-Goldwater Enc: Cracking \equiv Comp Secure PRG.
 PRO PRG's tie into other parts of the course
 PRO Uses Blum-Blum-Shub PRG. FUN to say Blum-Blum-Shub.
 NICK's CON Only transmits one friggin bit!
Other Public Key

1. Rabin Enc, and variants: Cracking \equiv factoring.
 PRO Cracking EQUIV to factoring!
 CON Never used, Too slow.
Other Public Key

1. Rabin Enc, and variants: Cracking \equiv factoring.
 PRO Cracking EQUIV to factoring!
 CON Never used, Too slow.

2. Goldwasser-Micali Enc: Cracking \equiv SQRT mod pq.
 CON Only transmits one friggin bit!
Other Public Key

1. Rabin Enc, and variants: Cracking \equiv factoring.
 PRO Cracking EQUIV to factoring!
 CON Never used, Too slow.

2. Goldwasser-Micali Enc: Cracking \equiv SQRT mod pq.
 PRO Cracking EQUIV to a natural problem.
Other Public Key

1. Rabin Enc, and variants: Cracking \equiv factoring.
 PRO Cracking EQUIV to factoring!
 CON Never used, Too slow.

2. Goldwasser-Micali Enc: Cracking \equiv SQRT mod pq.
 PRO Cracking EQUIV to a natural problem.
 CON Never used, Too Slow.
1. Rabin Enc, and variants: Cracking \equiv factoring.
 \textbf{PRO} Cracking EQUIV to factoring!
 \textbf{CON} Never used, Too slow.

2. Goldwasser-Micali Enc: Cracking \equiv SQRT mod pq.
 \textbf{PRO} Cracking EQUIV to a natural problem.
 \textbf{CON} Never used, Too Slow.
 \textbf{NICK’s CON} Only transmits one friggin bit!
Other Public Key

1. Rabin Enc, and variants: Cracking \equiv factoring.
 PRO Cracking EQUIV to factoring!
 CON Never used, Too slow.

2. Goldwasser-Micali Enc: Cracking \equiv SQRT mod pq.
 PRO Cracking EQUIV to a natural problem.
 CON Never used, Too Slow.
 NICK’s CON Only transmits one friggin bit!

3. Blum-Goldwater Enc: Cracking \equiv Comp Secure PRG.
Other Public Key

1. Rabin Enc, and variants: Cracking \equiv factoring.
 PRO Cracking EQUIV to factoring!
 CON Never used, Too slow.

2. Goldwasser-Micali Enc: Cracking \equiv SQRT mod pq.
 PRO Cracking EQUIV to a natural problem.
 CON Never used, Too Slow.
 NICK's CON Only transmits one friggin bit!

3. Blum-Goldwater Enc: Cracking \equiv Comp Secure PRG.
 PRO PRG's tie into other parts of the course
Other Public Key

1. Rabin Enc, and variants: Cracking \equiv factoring.
 PRO Cracking EQUIV to factoring!
 CON Never used, Too slow.

2. Goldwasser-Micali Enc: Cracking \equiv SQRT mod pq.
 PRO Cracking EQUIV to a natural problem.
 CON Never used, Too Slow.
 NICK’s CON Only transmits one friggin bit!

3. Blum-Goldwater Enc: Cracking \equiv Comp Secure PRG.
 PRO PRG’s tie into other parts of the course
 PRO Uses Blum-Blum-Shub PRG. FUN to say **Blum-Blum-Shub**.
Other Public Key

1. Rabin Enc, and variants: Cracking \(\equiv\) factoring.
 PRO Cracking EQUIV to factoring!
 CON Never used, Too slow.

2. Goldwasser-Micali Enc: Cracking \(\equiv\) SQRT mod \(pq\).
 PRO Cracking EQUIV to a natural problem.
 CON Never used, Too Slow.
 NICK’s CON Only transmits one friggin bit!

3. Blum-Goldwater Enc: Cracking \(\equiv\) Comp Secure PRG.
 PRO PRG’s tie into other parts of the course
 PRO Uses Blum-Blum-Shub PRG. FUN to say Blum-Blum-Shub.
 NICK’s CON Only transmits one friggin bit!
More Factoring Algorithms

1. Quadratic Sieve Factoring.
 - **PRO**: Faster than Pollard's algorithm. Really used.
 - **CON**: This is crypto not friggin Comp Number Theory!

2. Number Field Sieve Factoring.
 - **PRO**: Faster than Quadratic Sieve. Best known algorithm.
 - **CON**: BILL'S writeups are terrible. Don't know it yet.
More Factoring Algorithms

1. Quadratic Sieve Factoring.
More Factoring Algorithms

1. Quadratic Sieve Factoring.
 PRO Faster than Pollard’s algorithm. Really used.
More Factoring Algorithms

1. Quadratic Sieve Factoring.
 PRO Faster than Pollard’s algorithm. Really used.
 PRO I have awesome slide packets on it for 3 lectures.
More Factoring Algorithms

1. Quadratic Sieve Factoring.
 PRO Faster than Pollard’s algorithm. Really used.
 PRO I have awesome slide packets on it for 3 lectures.
 CON This is crypto not friggin Comp Number Theory!
1. Quadratic Sieve Factoring.
 PRO Faster than Pollard’s algorithm. Really used.
 PRO I have awesome slide packets on it for 3 lectures.
 CON This is crypto not friggin Comp Number Theory!

2. Number Field Sieve Factoring.
More Factoring Algorithms

1. Quadratic Sieve Factoring.
 PRO Faster than Pollard’s algorithm. Really used.
 PRO I have awesome slide packets on it for 3 lectures.
 CON This is crypto not friggin Comp Number Theory!

2. Number Field Sieve Factoring.
 PRO Faster than Quadratic Sieve. Best known algorithm.
More Factoring Algorithms

1. Quadratic Sieve Factoring.
 PRO Faster than Pollard’s algorithm. Really used.
 PRO I have awesome slide packets on it for 3 lectures.
 CON This is crypto not friggin Comp Number Theory!

2. Number Field Sieve Factoring.
 PRO Faster than Quadratic Sieve. Best known algorithm.
 BILL’S CON Writeups are terrible. Don’t know it yet.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
 PRO: Conceptually easy.
 CON: Has some messy details.

 PRO: Conceptually easy.
 CON: Has some messy details.

3. Other Algorithms.
 PRO: Interesting.
 CON: Messy.

CON: This is not a course on Comp Number Theory.
CON: In the future this might become a course in Comp Number Theory.
CON: Or on Quantum Computing.
CON: Or on Machine Learning.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
 PRO Conceptually easy.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
 - **PRO** Conceptually easy.
 - **CON** Has some messy details.

 - **PRO** Conceptually easy.
 - **CON** Has some messy details.

3. Other Algorithms.
 - **PRO** Interesting.
 - **CON** Messy.

This is not a course on Comp Number Theory. In the future this might become a course in Comp Number Theory. Or on Quantum Computing. Or on Machine Learning.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
 PRO Conceptually easy.
 CON Has some messy details.

This is not a course on Comp Number Theory. In the future this might become a course in Comp Number Theory. Or on Quantum Computing. Or on Machine Learning.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
 PRO Conceptually easy.
 CON Has some messy details.

 PRO Conceptually easy.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
 PRO Conceptually easy.
 CON Has some messy details.

 PRO Conceptually easy.
 CON Has some messy details.

This is not a course on Comp Number Theory. In the future this might become a course on Comp Number Theory, or on Quantum Computing, or on Machine Learning.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
 PRO Conceptually easy.
 CON Has some messy details.

 PRO Conceptually easy.
 CON Has some messy details.

3. Other Algorithms.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
 PRO Conceptually easy.
 CON Has some messy details.

 PRO Conceptually easy.
 CON Has some messy details.

3. Other Algorithms.
 PRO Interesting.

This is not a course on Comp Number Theory.
In the future this might become a course in Comp Number Theory.
Or on Quantum Computing.
Or on Machine Learning.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
 PRO Conceptually easy.
 CON Has some messy details.

 PRO Conceptually easy.
 CON Has some messy details.

3. Other Algorithms.
 PRO Interesting.
 CON Messy.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
 PRO Conceptually easy.
 CON Has some messy details.

 PRO Conceptually easy.
 CON Has some messy details.

3. Other Algorithms.
 PRO Interesting.
 CON Messy.
 CON This is not a course on *Comp Number Theory*.

This is not a course on Comp Number Theory.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
 PRO Conceptually easy.
 CON Has some messy details.

 PRO Conceptually easy.
 CON Has some messy details.

3. Other Algorithms.
 PRO Interesting.
 CON Messy.
 CON This is not a course on *Comp Number Theory*.
 CON In the future this might become a course in *Comp Number Theory*.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
 PRO Conceptually easy.
 CON Has some messy details.

 PRO Conceptually easy.
 CON Has some messy details.

3. Other Algorithms.
 PRO Interesting.
 CON Messy.
 CON This is not a course on Comp Number Theory.
 CON In the future this might become a course in Comp Number Theory. Or on Quantum Computing.
Algorithm For Discrete Log

1. Baby-Step Giant-Step Algorithm.
 PRO Conceptually easy.
 CON Has some messy details.

 PRO Conceptually easy.
 CON Has some messy details.

3. Other Algorithms.
 PRO Interesting.
 CON Messy.
 CON This is not a course on **Comp Number Theory**.
 CON In the future this might become a course in **Comp Number Theory**. Or on **Quantum Computing**. Or on **Machine Learning**.
There is a better way to do secret sharing with cards that transmits slightly more bits.

PRO
-I know it and I like it and it's not that hard.

CON
-Esoteric!

CAVEAT
-Raises the question of what's more important:

1. Messy protocols and attacks that are used in the real world.
2. Clean toy problems that are interesting.

I prefer Clean Toy Problems.

I may be wrong about this.
There is a better way to do secret sharing with cards that transmits slightly more bits.
More Secret Sharing with Cards

There is a better way to do secret sharing with cards that transmits slightly more bits.

PRO I know it and I like it and its not that hard.
More Secret Sharing with Cards

There is a better way to do secret sharing with cards that transmits slightly more bits.

PRO I know it and I like it and its not that hard.

CON Esoteric!
More Secret Sharing with Cards

There is a better way to do secret sharing with cards that transmits slightly more bits.

PRO I know it and I like it and its not that hard.

CON Esoteric!

CAVEAT Raises the question of what's more important:
There is a better way to do secret sharing with cards that transmits slightly more bits.

PRO I know it and I like it and its not that hard.

CON Esoteric!

CAVEAT Raises the question of what's more important:

1. *Messy protocols and attacks* that are used in the real world.
More Secret Sharing with Cards

There is a better way to do secret sharing with cards that transmits slightly more bits.

PRO I know it and I like it and its not that hard.

CON Esoteric!

CAVEAT Raises the question of what's more important:

1. Messy protocols and attacks that are used in the real world.
2. Clean toy problems that are interesting.
More Secret Sharing with Cards

There is a better way to do secret sharing with cards that transmits slightly more bits.

PRO I know it and I like it and its not that hard.

CON Esoteric!

CAVEAT Raises the question of whats more important:

1. Messy protocols and attacks that are used in the real world.
2. Clean toy problems that are interesting.

I prefer Clean Toy Problems.
There is a better way to do secret sharing with cards that transmits slightly more bits.

PRO I know it and I like it and its not that hard.

CON Esoteric!

CAVEAT Raises the question of what’s more important:

1. *Messy protocols and attacks* that are used in the real world.
2. *Clean toy problems* that are interesting.

I prefer **Clean Toy Problems**.

I may be wrong about this.
Computational Secret Sharing

We did Information-Theoretic Secret Sharing
Computational Secret Sharing

We did Information-Theoretic Secret Sharing

1. Recall Info-Theoretic: shares are size $\geq |s|$.
Computational Secret Sharing

We did **Information-Theoretic Secret Sharing**

1. **Recall** Info-Theoretic: shares are size $\geq |s|$. IF give the players comp limits then can do Secret Sharing with shares of size $\leq \beta |s|$ where $\beta < 1$.

PRO
- Uses PRG's so ties into earlier part of the course.
- I already have slides for it!

CON
- Shares of size $|s|$ seems quite fine.
- Messy!
- Both Esoteric, thought not as much as the cards-stuff.
Computational Secret Sharing

We did **Information-Theoretic Secret Sharing**

1. **Recall** Info-Theoretic: shares are size $\geq |s|$. IF give the players comp limits then can do Secret Sharing with shares of size $\leq \beta |s|$ where $\beta < 1$. **PRO** Uses PRG’s so ties into earlier part of the course.
Computational Secret Sharing

We did Information-Theoretic Secret Sharing

1. Recall Info-Theoretic: shares are size $\geq |s|$. IF give the players comp limits then can do Secret Sharing with shares of size $\leq \beta|s|$ where $\beta < 1$.
 PRO Uses PRG’s so ties into earlier part of the course.
 PRO I already have slides for it!

CON Shares of size $|s|$ seems quite fine.
CON Messy!

2. Recall Info-Theoretic: we need all players honest. IF players have comp limits then can do Secret Sharing where we verify all telling the truth.
 PRO I already have slides for it!
 CON If Putin can’t trust people then I don’t think he wants to learn the math to avoid this problem.
 CON Messy!
 CON Both Esoteric, thought not as much as the cards-stuff.
Computational Secret Sharing

We did Information-Theoretic Secret Sharing

1. Recall Info-Theoretic: shares are size $\geq |s|$. IF give the players comp limits then can do Secret Sharing with shares of size $\leq \beta |s|$ where $\beta < 1$.

PRO Uses PRG’s so ties into earlier part of the course.
PRO I already have slides for it!
CON Shares of size $|s|$ seems quite fine.

CON Messy!

2. Recall Info-Theoretic: we need all players honest. IF players have comp limits then can do Secret Sharing where we verify all telling the truth.

PRO I already have slides for it!
CON If Putin can’t trust people then I don’t think he wants to learn the math to avoid this problem.
CON Messy!

CON Both Esoteric, thought not as much as the cards stuff.
Computational Secret Sharing

We did **Information-Theoretic Secret Sharing**

1. **Recall** Info-Theoretic: shares are size $\geq |s|$.
 IF give the players comp limits then can do Secret Sharing with shares of size $\leq \beta |s|$ where $\beta < 1$.
 PRO Uses PRG’s so ties into earlier part of the course.
 PRO I already have slides for it!
 CON Shares of size $|s|$ seems quite fine.
 CON Messy!
Computational Secret Sharing

We did **Information-Theoretic Secret Sharing**

1. **Recall** Info-Theoretic: shares are size $\geq |s|$. IF give the players comp limits then can do Secret Sharing with shares of size $\leq \beta |s|$ where $\beta < 1$.

 PRO Uses PRG’s so ties into earlier part of the course.
 PRO I already have slides for it!
 CON Shares of size $|s|$ seems quite fine.
 CON Messy!

2. **Recall** Info-Theoretic: we need all players honest.
Computational Secret Sharing

We did **Information-Theoretic Secret Sharing**

1. **Recall** Info-Theoretic: shares are size $\geq |s|$.
 IF give the players comp limits then can do Secret Sharing with shares of size $\leq \beta|s|$ where $\beta < 1$.
 PRO Uses PRG’s so ties into earlier part of the course.
 PRO I already have slides for it!
 CON Shares of size $|s|$ seems quite fine.
 CON Messy!

2. **Recall** Info-Theoretic: we need all players honest.
 IF players have comp limits then can do Secret Sharing where we verify all telling the truth.
We did **Information-Theoretic Secret Sharing**

1. **Recall** Info-Theoretic: shares are size $\geq |s|$.
 IF give the players comp limits then can do Secret Sharing with shares of size $\leq \beta |s|$ where $\beta < 1$.
 PRO Uses PRG’s so ties into earlier part of the course.
 PRO I already have slides for it!
 CON Shares of size $|s|$ seems quite fine.
 CON Messy!

2. **Recall** Info-Theoretic: we need all players honest.
 IF players have comp limits then can do Secret Sharing where we verify all telling the truth.
 PRO I already have slides for it!
Computational Secret Sharing

We did **Information-Theoretic Secret Sharing**

1. **Recall** Info-Theoretic: shares are size $\geq |s|$. IF give the players comp limits then can do Secret Sharing with shares of size $\leq \beta |s|$ where $\beta < 1$.
 - **PRO** Uses PRG’s so ties into earlier part of the course.
 - **PRO** I already have slides for it!
 - **CON** Shares of size $|s|$ seems quite fine.
 - **CON** Messy!

2. **Recall** Info-Theoretic: we need all players honest.
 IF players have comp limits then can do Secret Sharing where we verify all telling the truth.
 - **PRO** I already have slides for it!
 - **CON** If Putin can’t trust people then I don’t think he wants to learn the math to avoid this problem.
Computational Secret Sharing

We did **Information-Theoretic Secret Sharing**

1. **Recall** Info-Theoretic: shares are size $\geq |s|$.
 IF give the players comp limits then can do Secret Sharing with shares of size $\leq \beta |s|$ where $\beta < 1$.
 PRO Uses PRG’s so ties into earlier part of the course.
 PRO I already have slides for it!
 CON Shares of size $|s|$ seems quite fine.
 CON Messy!

2. **Recall** Info-Theoretic: we need all players honest.
 IF players have comp limits then can do Secret Sharing where we verify all telling the truth.
 PRO I already have slides for it!
 CON If Putin can’t trust people then I don’t think he wants to learn the math to avoid this problem.
 CON Messy!
We did **Information-Theoretic Secret Sharing**

1. **Recall** Info-Theoretic: shares are size $\geq |s|$.
 IF give the players comp limits then can do Secret Sharing with shares of size $\leq \beta |s|$ where $\beta < 1$.
 PRO Uses PRG’s so ties into earlier part of the course.
 PRO I already have slides for it!
 CON Shares of size $|s|$ seems quite fine.
 CON Messy!

2. **Recall** Info-Theoretic: we need all players honest.
 IF players have comp limits then can do Secret Sharing where we verify all telling the truth.
 PRO I already have slides for it!
 CON If Putin can’t trust people then I don’t think he wants to learn the math to avoid this problem.
 CON Messy!
 CON Both Esoteric, thought not as much as the cards-stuff.
Non-Ideal Secret Sharing

Prove that certain access structures cannot have Ideal secret Sharing.
Non-Ideal Secret Sharing

Prove that certain access structures **cannot** have Ideal secret sharing.

More Fun for Me then for You!
1. Digital Signatures: Proving that Irene sent the email calling Bill a crazy croissant.
 - PRO: Really Used.
 - CON: Really Boring.
2. MD5 and other stream ciphers that are really used.
 - PRO: Really Really Used!
 - CON: Really Really Boring!
 - PRO: Hot topic.
 - PRO: Uses other parts of the course.
 - CON: Bitcoin is a Ponzi Scheme.
 - PRO: Hot topic.
 - PRO: Uses other parts of the course.
 - CON: Very detailed protocols.
 - CON: Other problems with voting—gerrymandering, disenfranchisement, replacing non-partisan voter commissioners with lackeys.
Other Real World Material

1. Digital Signatures: Proving that Irene send the email calling Bill a crazy croissant.
Other Real World Material

1. Digital Signatures: Proving that Irene send the email calling Bill a crazy croissant.
 PRO Really Used.

2. MD5 and other stream ciphers that are really used.
 PRO Really Really Used!
 CON Really Really Boring!

 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Bitcoin is a Ponzi Scheme.

 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Very detailed protocols.
 CON Other problems with voting—gerrymandering, disenfranchisement, replacing non-partisan voter commissioners with lackeys.
Other Real World Material

1. Digital Signatures: Proving that Irene sent the email calling Bill a crazy croissant.
 PRO Really Used.
 CON Really Boring.
Other Real World Material

1. Digital Signatures: Proving that Irene send the email calling Bill a crazy croissant.
 PRO Really Used.
 CON Really Boring.
2. MD5 and other stream ciphers that are really used.
 PRO Really Really Used!
 CON Really Really Boring!
 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Bitcoin is a Ponzi Scheme.
 CON Other problems with voting—gerrymandering, disenfranchisement, replacing non-partisan voter commissioners with lackeys.
 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Very detailed protocols.
 CON Other problems with voting—gerrymandering, disenfranchisement, replacing non-partisan voter commissioners with lackeys.
Other Real World Material

1. Digital Signatures: Proving that Irene send the email calling Bill a crazy croissant.
 PRO Really Used.
 CON Really Boring.
2. MD5 and other stream ciphers that are really used.
 PRO Really Really Really Used!
Other Real World Material

1. Digital Signatures: Proving that Irene send the email calling Bill a crazy croissant.
 PRO Really Used.
 CON Really Boring.

2. MD5 and other stream ciphers that are really used.
 PRO Really Really Used!
 CON Really Really Boring!

 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Bitcoin is a Ponzi Scheme.

 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Very detailed protocols.
 CON Other problems with voting—gerrymandering, disenfranchisement, replacing non-partisan voter commissioners with lackeys.
Other Real World Material

1. Digital Signatures: Proving that Irene sent the email calling Bill a crazy croissant.
 PRO Really Used.
 CON Really Boring.

2. MD5 and other stream ciphers that are really used.
 PRO Really Really Used!
 CON Really Really Boring!

 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Bitcoin is a Ponzi Scheme.
 CON Other problems with voting—gerrymandering, disenfranchisement, replacing non-partisan voter commissioners with lackeys.
Other Real World Material

1. Digital Signatures: Proving that Irene send the email calling Bill a crazy croissant.
 - **PRO** Really Used.
 - **CON** Really Boring.

2. MD5 and other stream ciphers that are really used.
 - **PRO** Really Really Used!
 - **CON** Really Really Boring!

 - **PRO** Hot topic.
Other Real World Material

1. Digital Signatures: Proving that Irene send the email calling Bill a crazy croissant.
 PRO Really Used.
 CON Really Boring.
2. MD5 and other stream ciphers that are really used.
 PRO Really Really Used!
 CON Really Really Boring!
 PRO Hot topic.
 PRO Uses other parts of the course.
Other Real World Material

1. Digital Signatures: Proving that Irene send the email calling Bill a crazy croissant.
 PRO Really Used.
 CON Really Boring.

2. MD5 and other stream ciphers that are really used.
 PRO Really Really Used!
 CON Really Really Boring!

 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Bitcoin is a Ponzi Scheme.

 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Very detailed protocols.
 CON Other problems with voting—gerrymandering, disenfranchisement, replacing non-partisan voter commissioners with lackeys.
Other Real World Material

1. Digital Signatures: Proving that Irene send the email calling Bill a crazy croissant.

 PRO Really Used.
 CON Really Boring.

2. MD5 and other stream ciphers that are really used.

 PRO Really Really Used!
 CON Really Really Boring!

 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Bitcoin is a Ponzi Scheme.

Other Real World Material

1. Digital Signatures: Proving that Irene send the email calling Bill a crazy croissant.
 PRO Really Used.
 CON Really Boring.

2. MD5 and other stream ciphers that are really used.
 PRO Really Really Used!
 CON Really Really Boring!

 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Bitcoin is a Ponzi Scheme.

 PRO Hot topic.
Other Real World Material

1. Digital Signatures: Proving that Irene send the email calling Bill a crazy croissant.

 PRO Really Used.
 CON Really Boring.

2. MD5 and other stream ciphers that are really used.

 PRO Really Really Used!
 CON Really Really Boring!

 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Bitcoin is a Ponzi Scheme.

 PRO Hot topic.
 PRO Uses other parts of the course.
Other Real World Material

1. Digital Signatures: Proving that Irene sent the email calling Bill a crazy croissant.
 - **PRO**: Really Used.
 - **CON**: Really Boring.

2. MD5 and other stream ciphers that are really used.
 - **PRO**: Really Really Used!
 - **CON**: Really Really Boring!

 - **PRO**: Hot topic.
 - **PRO**: Uses other parts of the course.
 - **CON**: Bitcoin is a Ponzi Scheme.

 - **PRO**: Hot topic.
 - **PRO**: Uses other parts of the course.
 - **CON**: Very detailed protocols.
Other Real World Material

1. Digital Signatures: Proving that Irene send the email calling Bill a crazy croissant.
 PRO Really Used.
 CON Really Boring.
2. MD5 and other stream ciphers that are really used.
 PRO Really Really Used!
 CON Really Really Boring!
 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Bitcoin is a Ponzi Scheme.
 PRO Hot topic.
 PRO Uses other parts of the course.
 CON Very detailed protocols.
 CON Other problems with voting— gerrymandering, disenfranchisement, replacing non-partisan voter commissioners with lackeys.
Proofs of Security, More Rigor

No Fun for me or for you.