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Public Key Cryptography

Alice and Bob never have to meet!



Number Theory Algs needed for Public Key

The following can be done quickly.

1. Given (a, n, p) compute an (mod p). Repeated Squaring.
Takes lg n + (number of 1’s in n).

2. Given n, find a safe prime of length n and a generator g .

3. Given a, b rel prime find inverse of a mod b: Euclidean alg.
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Number Theory Assumptions

1. Discrete Log is hard.

2. Factoring is hard.

Note Actual hardness assumptions are not quite DL hard and
Factoring hard but are close.



The Diffie-Helman Key Exchange

Alice and Bob will share a secret s. Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Zp.

2. Alice sends (p, g) to Bob in the clear (Eve sees (p, g)).

3. Alice picks random a ∈ {1, . . . , p − 1}, computes ga and
sends it to Bob in the clear (Eve sees ga).

4. Bob picks random b ∈ {1, . . . , p − 1}, computes gb and sends
it to Alice in the clear (Eve sees gb).

5. Alice computes (gb)a = gab.

6. Bob computes (ga)b = gab.

7. gab is the shared secret.

Def Let f be f (p, g , ga, gb) = gab.

Hardness assumption: f is hard to compute.
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ElGamal Uses DH So Can Control Message

1. Alice and Bob do Diffie Helman.

2. Alice and Bob share secret s = gab.

3. Alice and Bob compute (gab)−1 (mod p).

4. To send m, Alice sends c = mgab

5. To decrypt, Bob computes c(gab)−1 ≡ mgab(gab)−1 ≡ m

We omit discussion of Hardness assumption (HW)



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L. N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

Alice finds d such that ed ≡ 1 (mod R).

4. Alice broadcasts (N, e). (Bob and Eve both see it.)

5. Bob: To send m ∈ {1, . . . ,N − 1}, send me (mod N).

6. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med (mod R) ≡ m1 (mod R) ≡ m
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Hardness Assumption for RSA

Recall If Alice and Bob do RSA and Eve observes:

1. Eve sees (N, e,me). The message is m.

2. Eve knows that there exists primes p, q such that N = pq, but
she does not know what p, q are.

3. Eve knows that e is relatively prime to (p − 1)(q − 1).

Definition: Let f be f (N, e,me) = m, where N = pq and e has
an inverse mod (p − 1)(q − 1).
Hardness assumption (HA): f is hard to compute.
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Plain RSA Bytes!

The RSA given above is referred to as Plain RSA .
Insecure! m is always coded as me (mod N).

Make secure by padding: m ∈ {0, 1}L1 , r ∈ {0, 1}L2 .

To send m ∈ {0, 1}L1 , pick rand r ∈ {0, 1}L2 , send (rm)e .
(NOTE- rm means r CONCAT with m here and elsewhere.)
DEC: Alice finds rm and takes rightmost L1 bits.
Caveat: RSA still has issues when used in real world. They have
been fixed. Maybe.
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Attacks on RSA

1. Factoring Algs we did: Jevons, Pollard ρ, Pollard p − 1,

2. Factoring Algs we didn’t do: Quad Sieve, Number Field Sieve.

3. Low-e attack, Same-N attacks.

4. There are also hardware and sociology attacks. We did not
cover them, and could not have.

These attacks tell Alice and Bob how to up their game .



Attacks on RSA

1. Factoring Algs we did: Jevons, Pollard ρ, Pollard p − 1,

2. Factoring Algs we didn’t do: Quad Sieve, Number Field Sieve.

3. Low-e attack, Same-N attacks.

4. There are also hardware and sociology attacks. We did not
cover them, and could not have.

These attacks tell Alice and Bob how to up their game .



Factoring Algorithms:
Pollard ρ



Pollard ρ Algorithm

Define fc(x)← x ∗ x + c . Looks random.

x ← RAND(0,N − 1), c ← RAND(0,N − 1), y ← fc(x)
while TRUE

x ← fc(x)
y ← fc(fc(y))
d ← GCD(x − y ,N)
if d 6= 1 and d 6= N then break

output(d)



Pollard ρ Algorithm: Thought Exp

Let p be the least prime that div N. We do not know p.

The sequence x , fc(x), f (fc(x)), . . . is random-looking.

Put each element of the seq into its ≡ class mod p.

View the ≡-classes as buckets at the sequence as balls.

By Bday Paradox ∃ 2 elements of the seq in same bucket within
the first 2

√
p ≤ 2N1/4 with high prob.

By Thm there is an i such that the ith element in same bucket as
2ith element, some i ≤ 3N1/4, with high prob.

Hence (∃x , y)[x ≡ y (mod p)] so GCD(x − y ,N) 6= 1.

Caveat Need the sequence to be truly random to prove it works.
Don’t have that, but it works in practice.
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