Secret Sharing

$$
4 ロ>4 \text { 匂 } 1 \text { ㅍ } 4 \text { 三 }
$$

Threshold Secret Sharing

Zelda has a secret $s \in\{0,1\}^{n}$.
Def: Let $1 \leq t \leq m .(t, L)$-secret sharing is a way for Zelda to give strings to A_{1}, \ldots, A_{L} such that:

1. If any t get together than they can learn the secret.
2. If any $t-1$ get together they cannot learn the secret.

Threshold Secret Sharing Caveats

Cannot learn the secret. Two flavors:

1. Info-theoretic
2. Computational.

Note Access Structure is a set of sets of students closed under superset. Can also look at Secret Sharing with other access structures.

Methods For Secret Sharing

Assume $|s|=n$.

1. Random String Method.

PRO Can be used for ANY access structure.
CON For Threshold Zelda may have to give Alice LOTS of strings
2. Poly Method. Uses: t points det poly of $\operatorname{deg} t-1$. PRO Zelda gives Alice a share of exactly n. Simple.
CON Only used for threshold secret sharing DESCRIPTION Next Slide.

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING .

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING .

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING .

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING .

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.
3. Zelda forms polynomial $f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+s$.

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING .

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.
3. Zelda forms polynomial $f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+s$.
4. For $1 \leq i \leq m$ Zelda gives $A_{i} f(i) \bmod p$.

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING .

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.
3. Zelda forms polynomial $f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+s$.
4. For $1 \leq i \leq m$ Zelda gives $A_{i} f(i) \bmod p$.
5. Any t have t points from $f(x)$ so can find $f(x)$, s.

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING .

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.
3. Zelda forms polynomial $f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+s$.
4. For $1 \leq i \leq m$ Zelda gives $A_{i} f(i) \bmod p$.
5. Any t have t points from $f(x)$ so can find $f(x)$, s.
6. Any $t-1$ have $t-1$ points from $f(x)$. From these $t-1$ points what can they conclude?

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING .

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.
3. Zelda forms polynomial $f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+s$.
4. For $1 \leq i \leq m$ Zelda gives $A_{i} f(i) \bmod p$.
5. Any t have t points from $f(x)$ so can find $f(x)$, s.
6. Any $t-1$ have $t-1$ points from $f(x)$. From these $t-1$ points what can they conclude? NOTHING!

Threshold Secret Sharing With Polynomials: (t, m)

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that
Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING .

1. Secret $s \in \mathbb{Z}_{p}$. Zelda works $\bmod p$.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in \mathbb{Z}_{p}$.
3. Zelda forms polynomial $f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+s$.
4. For $1 \leq i \leq m$ Zelda gives $A_{i} f(i) \bmod p$.
5. Any t have t points from $f(x)$ so can find $f(x)$, s.
6. Any $t-1$ have $t-1$ points from $f(x)$. From these $t-1$ points what can they conclude? NOTHING! Any constant term is consistent with what they know.' So they know NOTHING about s.

Short Shares

If demand Info-theoretic security then shares have to be $\geq|s|$.
We did that in class: If A_{t} gets a share of length $<|s|-1$ then A_{1}, \ldots, A_{t-1} an simulate all $2^{|s|-1}$ possible shares of A_{t} to find $2^{|s|-1}$ possibilities for the secret. Violates info-theory security.

Using Hardness Assumptiosn can get shares of length $\beta|s|$ for $\beta<1$. This gives comp security.

Access Structures

Def An Access Structure is a set of subset of $\left\{A_{1}, \ldots, A_{m}\right\}$ closed under superset.

Access Structures

Def An Access Structure is a set of subset of $\left\{A_{1}, \ldots, A_{m}\right\}$ closed under superset.

1. If \mathcal{X} is an access structure then the following questions make sense:

Access Structures

Def An Access Structure is a set of subset of $\left\{A_{1}, \ldots, A_{m}\right\}$ closed under superset.

1. If \mathcal{X} is an access structure then the following questions make sense:
1.1 Is there a secret sharing scheme for \mathcal{X} ?

Access Structures

Def An Access Structure is a set of subset of $\left\{A_{1}, \ldots, A_{m}\right\}$ closed under superset.

1. If \mathcal{X} is an access structure then the following questions make sense:
1.1 Is there a secret sharing scheme for \mathcal{X} ?
1.2 Is there a secret sharing scheme for \mathcal{X} where all shares are the same size as the secret?

Access Structures

Def An Access Structure is a set of subset of $\left\{A_{1}, \ldots, A_{m}\right\}$ closed under superset.

1. If \mathcal{X} is an access structure then the following questions make sense:
1.1 Is there a secret sharing scheme for \mathcal{X} ?
1.2 Is there a secret sharing scheme for \mathcal{X} where all shares are the same size as the secret?
2. (t, m)-Threshold is an Access structure. The poly method gives a Secret Sharing scheme where all the shares are the same length as the secret.

Access Structures

Def An Access Structure is a set of subset of $\left\{A_{1}, \ldots, A_{m}\right\}$ closed under superset.

1. If \mathcal{X} is an access structure then the following questions make sense:
1.1 Is there a secret sharing scheme for \mathcal{X} ?
1.2 Is there a secret sharing scheme for \mathcal{X} where all shares are the same size as the secret?
2. (t, m)-Threshold is an Access structure. The poly method gives a Secret Sharing scheme where all the shares are the same length as the secret.
Def A secret sharing scheme is ideal if all shares come from the same domain as the secret.

Notation for Threshold

Let $\mathrm{TH}_{A}(t, m)$ be the Boolean Formula that represents at least t out of m of the A_{i} 's.

Notation for Threshold

Let $\mathrm{TH}_{A}(t, m)$ be the Boolean Formula that represents at least t out of m of the A_{i} 's.
Example $T H_{A}(2,4)$ is
At least 2 of $A_{1}, A_{2}, A_{3}, A_{4}$.

Notation for Threshold

Let $T H_{A}(t, m)$ be the Boolean Formula that represents at least t out of m of the A_{i} 's.
Example $T H_{A}(2,4)$ is
At least 2 of $A_{1}, A_{2}, A_{3}, A_{4}$.
Example $T H_{B}(3,6)$ is
At least 3 of B_{1}, \ldots, B_{6}.

Notation for Threshold

Let $T H_{A}(t, m)$ be the Boolean Formula that represents at least t out of m of the A_{i} 's.
Example $T H_{A}(2,4)$ is
At least 2 of $A_{1}, A_{2}, A_{3}, A_{4}$.
Example $T H_{B}(3,6)$ is
At least 3 of B_{1}, \ldots, B_{6}.
Note $T H_{A}(t, m)$ has ideal secret sharing.

Notation for Threshold

Let $T H_{A}(t, m)$ be the Boolean Formula that represents at least t out of m of the A_{i} 's.
Example $T H_{A}(2,4)$ is
At least 2 of $A_{1}, A_{2}, A_{3}, A_{4}$.
Example $T H_{B}(3,6)$ is
At least 3 of B_{1}, \ldots, B_{6}.
Note $T H_{A}(t, m)$ has ideal secret sharing.
Notation $T H_{A}\left(t_{1}, m_{1}\right) \vee T H_{B}\left(t_{2}, m_{2}\right)$ means that:

Notation for Threshold

Let $T H_{A}(t, m)$ be the Boolean Formula that represents at least t out of m of the A_{i} 's.
Example $T H_{A}(2,4)$ is
At least 2 of $A_{1}, A_{2}, A_{3}, A_{4}$.
Example $T H_{B}(3,6)$ is
At least 3 of B_{1}, \ldots, B_{6}.
Note $T H_{A}(t, m)$ has ideal secret sharing.
Notation $T H_{A}\left(t_{1}, m_{1}\right) \vee T H_{B}\left(t_{2}, m_{2}\right)$ means that:
$1 . \geq t_{1} A_{1}, \ldots, A_{m_{1}}$ can learn the secret.

Notation for Threshold

Let $T H_{A}(t, m)$ be the Boolean Formula that represents at least t out of m of the A_{i} 's.
Example $T H_{A}(2,4)$ is
At least 2 of $A_{1}, A_{2}, A_{3}, A_{4}$.
Example $T H_{B}(3,6)$ is
At least 3 of B_{1}, \ldots, B_{6}.
Note $T H_{A}(t, m)$ has ideal secret sharing.
Notation $T H_{A}\left(t_{1}, m_{1}\right) \vee T H_{B}\left(t_{2}, m_{2}\right)$ means that:

1. $\geq t_{1} A_{1}, \ldots, A_{m_{1}}$ can learn the secret.
2. $\geq t_{2} B_{1}, \ldots, B_{m_{2}}$ can learn the secret.

Notation for Threshold

Let $T H_{A}(t, m)$ be the Boolean Formula that represents at least t out of m of the A_{i} 's.
Example $T H_{A}(2,4)$ is
At least 2 of $A_{1}, A_{2}, A_{3}, A_{4}$.
Example $T H_{B}(3,6)$ is
At least 3 of B_{1}, \ldots, B_{6}.
Note $T H_{A}(t, m)$ has ideal secret sharing.
Notation $T H_{A}\left(t_{1}, m_{1}\right) \vee T H_{B}\left(t_{2}, m_{2}\right)$ means that:

1. $\geq t_{1} A_{1}, \ldots, A_{m_{1}}$ can learn the secret.
2. $\geq t_{2} B_{1}, \ldots, B_{m_{2}}$ can learn the secret.
3. No other group can learn the secret (e.g., A_{1}, A_{2}, B_{1} cannot)

Disjoint OR of $T H_{A}(t, m)$'s: Ideal Sec Sharing

There is Ideal Secret Sharing for $T H_{A}\left(t_{1}, m_{1}\right) \vee \cdots \vee T H_{Z}\left(t_{26}, m_{26}\right)$

AND of $T H_{A}(t, m) \mathrm{s}$: An Example

We want that if ≥ 2 of $A_{1}, A_{2}, A_{3}, A_{4}$ AND ≥ 4 of B_{1}, \ldots, B_{7} get together than they can learn the secret, but no other groups can.

AND of $T H_{A}(t, m) s$: An Example

We want that if ≥ 2 of $A_{1}, A_{2}, A_{3}, A_{4}$ AND ≥ 4 of B_{1}, \ldots, B_{7} get together than they can learn the secret, but no other groups can.

1. Zelda has secret $s,|s|=n$.

AND of $T H_{A}(t, m) \mathrm{s}$: An Example

We want that if ≥ 2 of $A_{1}, A_{2}, A_{3}, A_{4}$ AND ≥ 4 of B_{1}, \ldots, B_{7} get together than they can learn the secret, but no other groups can.

1. Zelda has secret $s,|s|=n$.
2. Zelda generates random $r \in\{0,1\}^{n}$.

AND of $T H_{A}(t, m) \mathrm{s}$: An Example

We want that if ≥ 2 of $A_{1}, A_{2}, A_{3}, A_{4}$ AND ≥ 4 of B_{1}, \ldots, B_{7} get together than they can learn the secret, but no other groups can.

1. Zelda has secret $s,|s|=n$.
2. Zelda generates random $r \in\{0,1\}^{n}$.
3. Zelda does $(2,4)$ secret sharing of r with $A_{1}, A_{2}, A_{3}, A_{4}$.

AND of $T H_{A}(t, m) \mathrm{s}$: An Example

We want that if ≥ 2 of $A_{1}, A_{2}, A_{3}, A_{4}$ AND ≥ 4 of B_{1}, \ldots, B_{7} get together than they can learn the secret, but no other groups can.

1. Zelda has secret $s,|s|=n$.
2. Zelda generates random $r \in\{0,1\}^{n}$.
3. Zelda does $(2,4)$ secret sharing of r with $A_{1}, A_{2}, A_{3}, A_{4}$.
4. Zelda does $(4,7)$ secret sharing of $r \oplus s$ with B_{1}, \ldots, B_{7}.

AND of $T H_{A}(t, m) \mathrm{s}$: An Example

We want that if ≥ 2 of $A_{1}, A_{2}, A_{3}, A_{4}$ AND ≥ 4 of B_{1}, \ldots, B_{7} get together than they can learn the secret, but no other groups can.

1. Zelda has secret $s,|s|=n$.
2. Zelda generates random $r \in\{0,1\}^{n}$.
3. Zelda does $(2,4)$ secret sharing of r with $A_{1}, A_{2}, A_{3}, A_{4}$.
4. Zelda does $(4,7)$ secret sharing of $r \oplus s$ with B_{1}, \ldots, B_{7}.
5. If ≥ 2 of A_{i} 's get together they can find r.

AND of $T H_{A}(t, m) \mathrm{s}$: An Example

We want that if ≥ 2 of $A_{1}, A_{2}, A_{3}, A_{4}$ AND ≥ 4 of B_{1}, \ldots, B_{7} get together than they can learn the secret, but no other groups can.

1. Zelda has secret $s,|s|=n$.
2. Zelda generates random $r \in\{0,1\}^{n}$.
3. Zelda does $(2,4)$ secret sharing of r with $A_{1}, A_{2}, A_{3}, A_{4}$.
4. Zelda does $(4,7)$ secret sharing of $r \oplus s$ with B_{1}, \ldots, B_{7}.
5. If ≥ 2 of A_{i} 's get together they can find r.

If ≥ 4 of B_{i} 's get together they can find $r \oplus s$.

AND of $T H_{A}(t, m) \mathrm{s}$: An Example

We want that if ≥ 2 of $A_{1}, A_{2}, A_{3}, A_{4}$ AND ≥ 4 of B_{1}, \ldots, B_{7} get together than they can learn the secret, but no other groups can.

1. Zelda has secret $s,|s|=n$.
2. Zelda generates random $r \in\{0,1\}^{n}$.
3. Zelda does $(2,4)$ secret sharing of r with $A_{1}, A_{2}, A_{3}, A_{4}$.
4. Zelda does $(4,7)$ secret sharing of $r \oplus s$ with B_{1}, \ldots, B_{7}.
5. If ≥ 2 of A_{i} 's get together they can find r.

If ≥ 4 of B_{i} 's get together they can find $r \oplus s$.
So if they all get together they can find

$$
r \oplus(r \oplus s)=s
$$

AND of $T H_{A}(t, m) s$: General

$T H_{A}\left(t_{1}, m_{1}\right) \wedge \cdots \wedge T H_{Z}\left(t_{26}, m_{26}\right)$ can do secret sharing.

General Theorem

Definition A monotone formula is a Boolean formula with no NOT signs.
If you put together what we did with TH and use induction you can prove the following:
Theorem Let X_{1}, \ldots, X_{N} each be a threshold $T H_{A}(t, m)$ but all using DIFFERENT players.
Let $F\left(X_{1}, \ldots, X_{N}\right)$ be a monotone Boolean formula where each X_{i} appears only once. Then Zelda can do ideal secret sharing where only sets that satisfy $F\left(X_{1}, \ldots, X_{N}\right)$ can learn the secret.

General Theorem

Definition A monotone formula is a Boolean formula with no NOT signs.
If you put together what we did with TH and use induction you can prove the following:
Theorem Let X_{1}, \ldots, X_{N} each be a threshold $T H_{A}(t, m)$ but all using DIFFERENT players.
Let $F\left(X_{1}, \ldots, X_{N}\right)$ be a monotone Boolean formula where each X_{i} appears only once. Then Zelda can do ideal secret sharing where only sets that satisfy $F\left(X_{1}, \ldots, X_{N}\right)$ can learn the secret.

Routine proof left to the reader. Might be on a HW or the Final.

Non-Ideal Access Structures

There are some- we skip this for the review.

Can Zelda Always Secret Share?

Zelda wants to share secret such that:

1. If A_{1}, A_{2}, A_{3} get together they can get secret.
2. If A_{1}, A_{4} get together they can get secret.
3. If A_{2}, A_{4} get together they can get secret.

Can do by Random String Method.

Can Zelda Always Secret Share?

Zelda wants to share secret such that:

1. If A_{1}, A_{2}, A_{3} get together they can get secret.
2. If A_{1}, A_{4} get together they can get secret.
3. If A_{2}, A_{4} get together they can get secret.

Can do by Random String Method.
Can do ANY access structure with Random String Method, though may be lots of shares.

Good Luck on the Exam

Good Luck on the Exam!

