Some Solutions to HW04 Problems

BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

HW04, Problem 2

Write programs for

EXP

TESTPRIME
TESTSAFEPRIME HOWMANYSAFEPRIMES.

STUDENT ISSUES

STUDENT ISSUES

a) Program Taking too long.

STUDENT ISSUES

a) Program Taking too long.

Often it was $a^{n}(\bmod p)$ is taking too much time. Need to do mod p after EVERY calculation so numbers don't get large.

STUDENT ISSUES

a) Program Taking too long.

Often it was $a^{n}(\bmod p)$ is taking too much time. Need to do mod p after EVERY calculation so numbers don't get large.
b) My answers are a wee bit diff from what I think we should get.

STUDENT ISSUES

a) Program Taking too long.

Often it was $a^{n}(\bmod p)$ is taking too much time. Need to do mod p after EVERY calculation so numbers don't get large.
b) My answers are a wee bit diff from what I think we should get.

- Test does NOT always work Carmichael Numbers are composites n such that $(\forall a \in\{1, \ldots, n-1\})\left[a^{n} \equiv 1\right.$ $(\bmod n)]$. These will be declared PRIME even though they are NOT.

STUDENT ISSUES

a) Program Taking too long.

Often it was $a^{n}(\bmod p)$ is taking too much time. Need to do mod p after EVERY calculation so numbers don't get large.
b) My answers are a wee bit diff from what I think we should get.

- Test does NOT always work Carmichael Numbers are composites n such that $(\forall a \in\{1, \ldots, n-1\})\left[a^{n} \equiv 1\right.$ $(\bmod n)]$. These will be declared PRIME even though they are NOT.
- n composite, not Carmichael, $\Longrightarrow(\exists a)\left[a^{n-1} \not \equiv 1(\bmod n)\right]$. Can get unlucky and pick $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ such that $(\forall i)\left[a_{i}^{n-1} \equiv 1(\bmod n)\right]$.

STUDENT ISSUES

a) Program Taking too long.

Often it was $a^{n}(\bmod p)$ is taking too much time. Need to do mod p after EVERY calculation so numbers don't get large.
b) My answers are a wee bit diff from what I think we should get.

- Test does NOT always work Carmichael Numbers are composites n such that $(\forall a \in\{1, \ldots, n-1\})\left[a^{n} \equiv 1\right.$ $(\bmod n)]$. These will be declared PRIME even though they are NOT.
- n composite, not Carmichael, $\Longrightarrow(\exists a)\left[a^{n-1} \not \equiv 1(\bmod n)\right]$.

Can get unlucky and pick $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ such that $(\forall i)\left[a_{i}^{n-1} \equiv 1(\bmod n)\right]$.
PROJECT IDEA how common is this?

HW04, Problem 3

a) Run HOWMANYSAFEPRIME on 10000, 20000, ..., 90000 . Find prop of safe primes in $\{1, \ldots, 10000\}, \ldots,\{1, \ldots, 90000\}$.

HW04, Problem 3

a) Run HOWMANYSAFEPRIME on 10000, 20000, ..., 90000.

Find prop of safe primes in $\{1, \ldots, 10000\}, \ldots,\{1, \ldots, 90000\}$.
b) Use a to conj $f(x+10000)-f(x),(f=$ HWMNYSFPRMS $)$.

HW04, Problem 3

a) Run HOWMANYSAFEPRIME on 10000, 20000, ..., 90000.

Find prop of safe primes in $\{1, \ldots, 10000\}, \ldots,\{1, \ldots, 90000\}$.
b) Use a to conj $f(x+10000)-f(x),(f=$ HWMNYSFPRMS $)$. COMMENTS
Math Conj Numb of safe primes $\leq n$ is $\frac{c n}{\ln n}+O(1)$. Implies:

$$
f(x+10000)-f(x)=c\left(\frac{x+10000}{\ln (x+10000)}-\frac{x}{\ln x}\right) \sim c\left(\frac{10000}{\ln x}\right)
$$

HW04, Problem 3

a) Run HOWMANYSAFEPRIME on 10000, 20000, ..., 90000 .

Find prop of safe primes in $\{1, \ldots, 10000\}, \ldots,\{1, \ldots, 90000\}$.
b) Use a to conj $f(x+10000)-f(x),(f=H W M N Y S F P R M S)$. COMMENTS
Math Conj Numb of safe primes $\leq n$ is $\frac{c n}{\ln n}+O(1)$. Implies:

$$
f(x+10000)-f(x)=c\left(\frac{x+10000}{\ln (x+10000)}-\frac{x}{\ln x}\right) \sim c\left(\frac{10000}{\ln x}\right)
$$

Your data to small to show this, but should have shown:

$$
f(x+10000)-f(x) \text { is a decreasing function }
$$

$$
\lim _{x \rightarrow \infty} f(x+10000)-f(x)=0
$$

HW04, Problem 3

a) Run HOWMANYSAFEPRIME on 10000, 20000, ..., 90000 .

Find prop of safe primes in $\{1, \ldots, 10000\}, \ldots,\{1, \ldots, 90000\}$.
b) Use a to conj $f(x+10000)-f(x),(f=H W M N Y S F P R M S)$. COMMENTS
Math Conj Numb of safe primes $\leq n$ is $\frac{c n}{\ln n}+O(1)$. Implies:

$$
f(x+10000)-f(x)=c\left(\frac{x+10000}{\ln (x+10000)}-\frac{x}{\ln x}\right) \sim c\left(\frac{10000}{\ln x}\right)
$$

Your data to small to show this, but should have shown:

$$
f(x+10000)-f(x) \text { is a decreasing function }
$$

$$
\lim _{x \rightarrow \infty} f(x+10000)-f(x)=0
$$

PROJECT IDEA Estimate c.

HW04, Problem 4,5

a) Write programs for TESTGEN and FINDGEN
b) Run and find NUMBGEN for a variety of numbers given.
c) Make a conjectures about Prop of NUMBGEN, called g.

HW04, Problem 4,5

a) Write programs for TESTGEN and FINDGEN
b) Run and find NUMBGEN for a variety of numbers given.
c) Make a conjectures about Prop of NUMBGEN, called g. COMMENTS
Thm ($\exists c$)

$$
g(p)=\frac{c p}{\ln \ln p}+O(1)
$$

HW04, Problem 4,5

a) Write programs for TESTGEN and FINDGEN
b) Run and find NUMBGEN for a variety of numbers given.
c) Make a conjectures about Prop of NUMBGEN, called g.

COMMENTS
Thm ($\exists c$)

$$
g(p)=\frac{c p}{\ln \ln p}+O(1)
$$

Doubt your data would have lead you to this equation, not enough data, and c is unknown.

HW04, Problem 4,5

a) Write programs for TESTGEN and FINDGEN
b) Run and find NUMBGEN for a variety of numbers given.
c) Make a conjectures about Prop of NUMBGEN, called g.

COMMENTS
Thm ($\exists c$)

$$
g(p)=\frac{c p}{\ln \ln p}+O(1)
$$

Doubt your data would have lead you to this equation, not enough data, and c is unknown.
However, your data should lead you to:
$g(p)$ is an increasing function
and some conj function that goes to infinity, perhaps lin function with factor <1.

HW04, Problem 4,5

a) Write programs for TESTGEN and FINDGEN
b) Run and find NUMBGEN for a variety of numbers given.
c) Make a conjectures about Prop of NUMBGEN, called g.

COMMENTS
Thm ($\exists c$)

$$
g(p)=\frac{c p}{\ln \ln p}+O(1)
$$

Doubt your data would have lead you to this equation, not enough data, and c is unknown.
However, your data should lead you to:
$g(p)$ is an increasing function
and some conj function that goes to infinity, perhaps lin function with factor <1.
PROJECT IDEA Find c.

