Some Solutions to HW05 Problems

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Alice and Bob are doing Diffie Hellman with p = 31 and g = 2. Note that g is NOT a generator. Alice uses a = 8 and Bob uses b = 9. What is the shared secret key? Express as a number in $\{0, \ldots, 30\}$

Alice and Bob are doing Diffie Hellman with p = 31 and g = 2. Note that g is NOT a generator. Alice uses a = 8 and Bob uses b = 9. What is the shared secret key? Express as a number in $\{0, \ldots, 30\}$ **SOLUTION**

$$(2^8)^9 \equiv 2^{72} \pmod{31} \equiv 2^{72} \pmod{30} \pmod{31} \equiv 2^{12} \pmod{31}$$

We will now use that $2^5 = 32 \equiv 1 \pmod{31}$.

 $2^{12} = 2^5 \times 2^5 \times 2^2 \pmod{31} \equiv 1 \times 1 \times 4 \pmod{31} \equiv 4 \pmod{31}.$

Why is using a non-gen bad? Use p = 31 and g = 2 to make point.

Why is using a non-gen bad? Use p = 31 and g = 2 to make point. SOLUTION

Lets look at the case at hand: p = 31 and g = 2. Math is mod 31. The only numbs we use:

Why is using a non-gen bad? Use p = 31 and g = 2 to make point. SOLUTION

Lets look at the case at hand: p = 31 and g = 2. Math is mod 31. The only numbs we use: $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$.

Why is using a non-gen bad? Use p = 31 and g = 2 to make point. SOLUTION

Lets look at the case at hand: p = 31 and g = 2. Math is mod 31. The only numbs we use: $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$. A & B are *not* operating in \mathbb{Z}_{31}^* which has 30 elements, but in \mathbb{Z}_5^* which has only 5 elements.

Why is using a non-gen bad? Use p = 31 and g = 2 to make point. SOLUTION

Lets look at the case at hand: p = 31 and g = 2. Math is mod 31. The only numbs we use: $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$. A & B are *not* operating in \mathbb{Z}_{31}^* which has 30 elements, but in \mathbb{Z}_5^* which has only 5 elements.

When we pick p we want to be using \mathbb{Z}_p^* , not some smaller domain. If g is not a generator we will end up on \mathbb{Z}_q^* where q divides p-1 and hence is much smaller than p.

Why is using a non-gen bad? Use p = 31 and g = 2 to make point. SOLUTION

Lets look at the case at hand: p = 31 and g = 2. Math is mod 31. The only numbs we use: $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$. A & B are *not* operating in \mathbb{Z}_{31}^* which has 30 elements, but in \mathbb{Z}_5^* which has only 5 elements.

When we pick p we want to be using \mathbb{Z}_p^* , not some smaller domain. If g is not a generator we will end up on \mathbb{Z}_q^* where q divides p-1 and hence is much smaller than p.

1) Badly written answers that referred to security got Full credit. In future will demand clean answer.

Why is using a non-gen bad? Use p = 31 and g = 2 to make point. SOLUTION

Lets look at the case at hand: p = 31 and g = 2. Math is mod 31. The only numbs we use: $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$. A & B are *not* operating in \mathbb{Z}_{31}^* which has 30 elements, but in \mathbb{Z}_5^* which has only 5 elements.

When we pick p we want to be using \mathbb{Z}_p^* , not some smaller domain. If g is not a generator we will end up on \mathbb{Z}_q^* where q divides p-1 and hence is much smaller than p.

1) Badly written answers that referred to security got Full credit. In future will demand clean answer.

2) Some students said if g is not a generator then there could be an (a, b) an (a', b') they yield THE SAME secret Key, bad for DECRYPTION. BUT DH IS NOT A CRYPTO SYSTEM. Full Credit since raised a good point. In future will demand clean correct answer.

HW05, Problem 3a

p = 47 and g = 5. Alice uses a = 10 and Bob uses b = 11. What is the shared secret key? Express as a number in $\{0, \dots, 46\}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

HW05, Problem 3a

p = 47 and g = 5. Alice uses a = 10 and Bob uses b = 11. What is the shared secret key? Express as a number in $\{0, \ldots, 46\}$ SOLUTION $(5^{10})^{11} = 5^{110} \equiv 5^{110} \pmod{46} \equiv 5^{18} \pmod{47} \equiv 2$ END OF SOLUTION

p = 47 and g = 5. Alice uses a = 11 and Bob uses b = 10. What is the shared secret key? Express as a number in $\{0, \dots, 46\}$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

p = 47 and g = 5. Alice uses a = 11 and Bob uses b = 10. What is the shared secret key? Express as a number in $\{0, \ldots, 46\}$. SOLUTION $(5^{11})^{10} = 5^{110} \equiv 5^{110} \pmod{46} \equiv 5^{18} \pmod{47} \equiv 2$ END OF SOLUTION

HW05, Problem 3c

Prove that: Let p be a prime and g be a generator. Let $a, b \in \{0, ..., p-1\}$. Let $s_{a,b}$ be the shared secret key if Alice uses a and Bob uses b. Show that $s_{a,b} = s_{b,a}$.

HW05, Problem 3c

Prove that:

Let p be a prime and g be a generator. Let $a, b \in \{0, ..., p-1\}$. Let $s_{a,b}$ be the shared secret key if Alice uses a and Bob uses b. Show that $s_{a,b} = s_{b,a}$. SOLUTION

If Alice uses *a* and Bob uses *b* then the shared secret string is g^{ab} . If Alice uses *b* and Bob uses *a* then the shared secret string is g^{ba} . These two are equal since ab = ba. This is NOT a trivial remark since one CAN do DH in domains which are not commutative.

HW05, Problem 3c

Prove that:

Let p be a prime and g be a generator. Let $a, b \in \{0, ..., p-1\}$. Let $s_{a,b}$ be the shared secret key if Alice uses a and Bob uses b. Show that $s_{a,b} = s_{b,a}$.

SOLUTION

If Alice uses *a* and Bob uses *b* then the shared secret string is g^{ab} . If Alice uses *b* and Bob uses *a* then the shared secret string is g^{ba} . These two are equal since ab = ba. This is NOT a trivial remark since one CAN do DH in domains which are not commutative. **Some Students** on piazza asked how rigorous the proof had to be. This is **not** the kind of proof for which this question makes sense. Above is rigorous. No subtle issues.

HW05, Problem 4a

Alice and Bob are going to use RSA with primes p = 7 and q = 11. List all possible values of $e \ge 10$ that Alice could pick. **SOLUTION** $R = \phi(7) \times \phi(11) = 6 \times 10 = 60.$ e has to be rel prime to 60. Here are all such numbers:

{11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59} END OF SOLUTION

ション ふゆ アメリア メリア しょうくしゃ

Alice and Bob are going to use RSA with primes p = 7 and q = 11. Let *e* be a number NOT on the list in the last item. What goes wrong if Alice tries to use *e*? **SOLUTION**

Since *e* is NOT rel prime to 60, there is no *d* with $ed \equiv 1 \pmod{60}$. So in the very next step of trying to pick *d*, Alice will fail.

END OF SOLUTION

HW05 Problem 5a

Alice and Bob are again using RSA with p = 7 and q = 11. Let e = 13 (This is a value that can be used). What is d?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

HW05 Problem 5a

Alice and Bob are again using RSA with p = 7 and q = 11. Let e = 13 (This is a value that can be used). What is d? SOLUTION d is the inverse of 13 mod 60 so thats 37. END OF SOLUTION

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Alice and Bob are again using RSA with p = 7 and q = 11 and e = 13. What does Alice broadcast? What does she keep secret? SOLUTION She broadcasts (77, 13). She keeps secret 37. END OF SOLUTION

HW05 Problem 5c

Bob wants to send 30. What does he send? **SOLUTION** Bob sends $30^{13} \pmod{77} = 72$. **END OF SOLUTION**

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

HW05 Problem 5d

Bob sends 71. Show how Alice determines m and also give us m.

HW05 Problem 5d

Bob sends 71. Show how Alice determines m and also give us m. **SOLUTION**

$$m^{13} \equiv 71 \pmod{77}$$

Raise both sides to the power 37 (the value of d).

$$m^{13 \times 37} \equiv 71^{37} \equiv 36 \pmod{77}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

KEY is that the exponents are mod 60 which is $\phi(77)$ and $13 \times 37 \equiv 1 \pmod{60}$ so we get m = 36. END OF SOLUTION