Some Solutions to HW05 Problems

BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

HW05, Problem 2a

Alice and Bob are doing Diffie Hellman with $p=31$ and $g=2$. Note that g is NOT a generator. Alice uses $a=8$ and Bob uses $b=9$. What is the shared secret key? Express as a number in $\{0, \ldots, 30\}$

HW05, Problem 2a

Alice and Bob are doing Diffie Hellman with $p=31$ and $g=2$. Note that g is NOT a generator. Alice uses $a=8$ and Bob uses $b=9$. What is the shared secret key? Express as a number in $\{0, \ldots, 30\}$
SOLUTION

$$
\left(2^{8}\right)^{9} \equiv 2^{72} \quad(\bmod 31) \equiv 2^{72} \quad(\bmod 30) \quad(\bmod 31) \equiv 2^{12} \quad(\bmod 31)
$$

We will now use that $2^{5}=32 \equiv 1(\bmod 31)$.

$$
2^{12}=2^{5} \times 2^{5} \times 2^{2} \quad(\bmod 31) \equiv 1 \times 1 \times 4 \quad(\bmod 31) \equiv 4 \quad(\bmod 31)
$$

HW05, Problem 2b

Why is using a non-gen bad? Use $p=31$ and $g=2$ to make point.

HW05, Problem 2b

Why is using a non-gen bad? Use $p=31$ and $g=2$ to make point. SOLUTION
Lets look at the case at hand: $p=31$ and $g=2$. Math is mod 31 . The only numbs we use:

HW05, Problem 2b

Why is using a non-gen bad? Use $p=31$ and $g=2$ to make point. SOLUTION
Lets look at the case at hand: $p=31$ and $g=2$. Math is mod 31 . The only numbs we use: $2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16$.

HW05, Problem 2b

Why is using a non-gen bad? Use $p=31$ and $g=2$ to make point. SOLUTION
Lets look at the case at hand: $p=31$ and $g=2$. Math is mod 31 . The only numbs we use: $2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16$. $A \& B$ are not operating in \mathbb{Z}_{31}^{*} which has 30 elements, but in \mathbb{Z}_{5}^{*} which has only 5 elements.

HW05, Problem 2b

Why is using a non-gen bad? Use $p=31$ and $g=2$ to make point. SOLUTION
Lets look at the case at hand: $p=31$ and $g=2$. Math is mod 31 . The only numbs we use: $2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16$. $\mathrm{A} \& \mathrm{~B}$ are not operating in \mathbb{Z}_{31}^{*} which has 30 elements, but in \mathbb{Z}_{5}^{*} which has only 5 elements.
When we pick p we want to be using \mathbb{Z}_{p}^{*}, not some smaller domain. If g is not a generator we will end up on \mathbb{Z}_{q}^{*} where q divides $p-1$ and hence is much smaller than p.

HW05, Problem 2b

Why is using a non-gen bad? Use $p=31$ and $g=2$ to make point. SOLUTION
Lets look at the case at hand: $p=31$ and $g=2$. Math is mod 31 . The only numbs we use: $2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16$. $A \& B$ are not operating in \mathbb{Z}_{31}^{*} which has 30 elements, but in \mathbb{Z}_{5}^{*} which has only 5 elements.
When we pick p we want to be using \mathbb{Z}_{p}^{*}, not some smaller domain. If g is not a generator we will end up on \mathbb{Z}_{q}^{*} where q divides $p-1$ and hence is much smaller than p.

1) Badly written answers that referred to security got Full credit. In future will demand clean answer.

HW05, Problem 2b

Why is using a non-gen bad? Use $p=31$ and $g=2$ to make point. SOLUTION
Lets look at the case at hand: $p=31$ and $g=2$. Math is mod 31 . The only numbs we use: $2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16$. $\mathrm{A} \& \mathrm{~B}$ are not operating in \mathbb{Z}_{31}^{*} which has 30 elements, but in \mathbb{Z}_{5}^{*} which has only 5 elements.
When we pick p we want to be using \mathbb{Z}_{p}^{*}, not some smaller domain. If g is not a generator we will end up on \mathbb{Z}_{q}^{*} where q divides $p-1$ and hence is much smaller than p.

1) Badly written answers that referred to security got Full credit. In future will demand clean answer.
2) Some students said if g is not a generator then there could be an (a, b) an $\left(a^{\prime}, b^{\prime}\right)$ they yield THE SAME secret Key, bad for DECRYPTION. BUT DH IS NOT A CRYPTO SYSTEM. Full Credit since raised a good point. In future will demand clean correct answer.

HW05, Problem 3a

$p=47$ and $g=5$. Alice uses $a=10$ and Bob uses $b=11$. What is the shared secret key? Express as a number in $\{0, \ldots, 46\}$

HW05, Problem 3a

$p=47$ and $g=5$. Alice uses $a=10$ and Bob uses $b=11$. What is the shared secret key? Express as a number in $\{0, \ldots, 46\}$ SOLUTION
$\left(5^{10}\right)^{11}=5^{110} \equiv 5^{110(\bmod 46)} \equiv 5^{18}(\bmod 47) \equiv 2$
END OF SOLUTION

HW05, Problem 3b

$p=47$ and $g=5$. Alice uses $a=11$ and Bob uses $b=10$. What is the shared secret key? Express as a number in $\{0, \ldots, 46\}$.

HW05, Problem 3b

$p=47$ and $g=5$. Alice uses $a=11$ and Bob uses $b=10$. What is the shared secret key? Express as a number in $\{0, \ldots, 46\}$. SOLUTION
$\left(5^{11}\right)^{10}=5^{110} \equiv 5^{110(\bmod 46)} \equiv 5^{18}(\bmod 47) \equiv 2$
END OF SOLUTION

HW05, Problem 3c

Prove that:
Let p be a prime and g be a generator. Let $a, b \in\{0, \ldots, p-1\}$. Let $s_{a, b}$ be the shared secret key if Alice uses a and Bob uses b. Show that $s_{a, b}=s_{b, a}$.

HW05, Problem 3c

Prove that:
Let p be a prime and g be a generator. Let $a, b \in\{0, \ldots, p-1\}$. Let $s_{a, b}$ be the shared secret key if Alice uses a and Bob uses b. Show that $s_{a, b}=s_{b, a}$.
SOLUTION
If Alice uses a and Bob uses b then the shared secret string is $g^{a b}$. If Alice uses b and Bob uses a then the shared secret string is $g^{b a}$. These two are equal since $a b=b a$. This is NOT a trivial remark since one CAN do DH in domains which are not commutative.

HW05, Problem 3c

Prove that:
Let p be a prime and g be a generator. Let $a, b \in\{0, \ldots, p-1\}$. Let $s_{a, b}$ be the shared secret key if Alice uses a and Bob uses b.
Show that $s_{a, b}=s_{b, a}$.
SOLUTION
If Alice uses a and Bob uses b then the shared secret string is $g^{a b}$.
If Alice uses b and Bob uses a then the shared secret string is $g^{b a}$.
These two are equal since $a b=b a$. This is NOT a trivial remark since one CAN do DH in domains which are not commutative. Some Students on piazza asked how rigorous the proof had to be. This is not the kind of proof for which this question makes sense. Above is rigorous. No subtle issues.

HW05, Problem 4a

Alice and Bob are going to use RSA with primes $p=7$ and $q=11$. List all possible values of $e \geq 10$ that Alice could pick. SOLUTION
$R=\phi(7) \times \phi(11)=6 \times 10=60$.
e has to be rel prime to 60 .
Here are all such numbers:

$$
\{11,13,17,19,23,29,31,37,41,43,47,49,53,59\}
$$

END OF SOLUTION

HW05, Problem 4b

Alice and Bob are going to use RSA with primes $p=7$ and $q=11$. Let e be a number NOT on the list in the last item. What goes wrong if Alice tries to use e ?
SOLUTION
Since e is NOT rel prime to 60 , there is no d with $e d \equiv 1(\bmod 60)$.
So in the very next step of trying to pick d, Alice will fail.
END OF SOLUTION

HW05 Problem 5a

Alice and Bob are again using RSA with $p=7$ and $q=11$. Let $e=13$ (This is a value that can be used).
What is d ?

HW05 Problem 5a

Alice and Bob are again using RSA with $p=7$ and $q=11$. Let $e=13$ (This is a value that can be used).
What is d ?
SOLUTION
d is the inverse of $13 \bmod 60$ so thats 37 .
END OF SOLUTION

HW05 Problem 5b

Alice and Bob are again using RSA with $p=7$ and $q=11$ and $e=13$. What does Alice broadcast? What does she keep secret? SOLUTION
She broadcasts $(77,13)$. She keeps secret 37. END OF SOLUTION

HW05 Problem 5c

Bob wants to send 30 . What does he send? SOLUTION
Bob sends $30^{13}(\bmod 77)=72$.
END OF SOLUTION

HW05 Problem 5d

Bob sends 71. Show how Alice determines m and also give us m.

HW05 Problem 5d

Bob sends 71. Show how Alice determines m and also give us m. SOLUTION

$$
m^{13} \equiv 71 \quad(\bmod 77)
$$

Raise both sides to the power 37 (the value of d).

$$
m^{13 \times 37} \equiv 71^{37} \equiv 36 \quad(\bmod 77)
$$

KEY is that the exponents are mod 60 which is $\phi(77)$ and $13 \times 37 \equiv 1(\bmod 60)$ so we get $m=36$.
END OF SOLUTION

