Solutions to HW07 Problems

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

・ロト・四ト・ミト・ミト・ヨー シック

SOLUTION What DAY and TIME are the TIMED FINAL?

SOLUTION What DAY and TIME are the TIMED FINAL? **SOLUTION** Friday Dec 17 at 8:00PM on Zoom.

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

SOLUTION What DAY and TIME are the TIMED FINAL? **SOLUTION** Friday Dec 17 at 8:00PM on Zoom.

If that DAY/TIME is not good for you then EMAIL ME.

SOLUTION What DAY and TIME are the TIMED FINAL? **SOLUTION** Friday Dec 17 at 8:00PM on Zoom.

If that DAY/TIME is not good for you then EMAIL ME. **SOLUTION** If this applies to you, EMAIL ME.

SOLUTION

What DAY and TIME are the TIMED FINAL? **SOLUTION** Friday Dec 17 at 8:00PM on Zoom.

If that DAY/TIME is not good for you then EMAIL ME. **SOLUTION** If this applies to you, EMAIL ME.

We are NOT meeting the Tuesday of Thankgiving. When is the make-up lecture?

SOLUTION

What DAY and TIME are the TIMED FINAL? **SOLUTION** Friday Dec 17 at 8:00PM on Zoom.

If that DAY/TIME is not good for you then EMAIL ME. **SOLUTION** If this applies to you, EMAIL ME.

We are NOT meeting the Tuesday of Thankgiving. When is the make-up lecture? SOLUTION Wed Nov 17 at 8:00PM on my zoom https://umd.zoom.us/my/gasarch

Let a_1, a_2, a_3 be such that every pair a_i, a_j are relatively prime. Show that

$$\phi(\mathsf{a}_1\mathsf{a}_2\mathsf{a}_3)=\phi(\mathsf{a}_1)\phi(\mathsf{a}_2)\phi(\mathsf{a}_3).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

You may use that if a, b are rel prime then $\phi(ab) = \phi(a)\phi(b)$.

Let a_1, a_2, a_3 be such that every pair a_i, a_j are relatively prime. Show that

$$\phi(\mathsf{a}_1\mathsf{a}_2\mathsf{a}_3)=\phi(\mathsf{a}_1)\phi(\mathsf{a}_2)\phi(\mathsf{a}_3).$$

You may use that if a, b are rel prime then $\phi(ab) = \phi(a)\phi(b)$. SOLUTION

Since a_1a_2 is rel prime to a_3 we know that

$$\phi(a_1(a_2a_3))=\phi(a_1)\phi(a_2a_n).$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Let a_1, a_2, a_3 be such that every pair a_i, a_j are relatively prime. Show that

$$\phi(\mathsf{a}_1\mathsf{a}_2\mathsf{a}_3)=\phi(\mathsf{a}_1)\phi(\mathsf{a}_2)\phi(\mathsf{a}_3).$$

You may use that if a, b are rel prime then $\phi(ab) = \phi(a)\phi(b)$. SOLUTION

Since a_1a_2 is rel prime to a_3 we know that

$$\phi(a_1(a_2a_3))=\phi(a_1)\phi(a_2a_n).$$

We now use $\phi(a_2a_3) = \phi(a_2)\phi(a_3)$ to get

$$\phi(a_1(a_2a_3)) = \phi(a_1)\phi(a_2a_3) = \phi(a_1)\phi(a_2)\phi(a_3).$$

HW07, Problem 3, EXTRA

If a_1, \ldots, a_n are such that every pair is rel prime then

$$\phi(a_1a_2\cdots a_n)=\phi(a_1)\phi(a_2)\cdots\phi(a_n).$$

HW07, Problem 3, EXTRA

If a_1, \ldots, a_n are such that every pair is rel prime then

$$\phi(a_1a_2\cdots a_n)=\phi(a_1)\phi(a_2)\cdots\phi(a_n).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

How do you prove this?

If a_1, \ldots, a_n are such that every pair is rel prime then

$$\phi(a_1a_2\cdots a_n)=\phi(a_1)\phi(a_2)\cdots\phi(a_n).$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

How do you prove this?

By Induction!

Let p be a prime and $a \ge 1$. Find and prove a formula for $\phi(p^a)$.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Let p be a prime and $a \ge 1$. Find and prove a formula for $\phi(p^a)$. SOLUTION

We need to know:

How many elements of $\{1, \ldots, p^a\}$ are rel prime to p^a ?

Let p be a prime and $a \ge 1$. Find and prove a formula for $\phi(p^a)$. SOLUTION

We need to know:

How many elements of $\{1, \ldots, p^a\}$ are rel prime to p^a ?

It is easier to find

How many elements of $\{1, \ldots, p^a\}$ are not rel prime to p^a ?

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Let p be a prime and $a \ge 1$. Find and prove a formula for $\phi(p^a)$. SOLUTION

We need to know:

How many elements of $\{1, \ldots, p^a\}$ are rel prime to p^a ?

It is easier to find How many elements of $\{1, ..., p^a\}$ are not rel prime to p^a ?

Those elements are

$$\{p, 2p, 3p, \ldots, p^{a-1}p\}.$$

So there are p^{a-1} such elements.

Let p be a prime and $a \ge 1$. Find and prove a formula for $\phi(p^a)$. SOLUTION

We need to know:

How many elements of $\{1, \ldots, p^a\}$ are rel prime to p^a ?

It is easier to find How many elements of $\{1, ..., p^a\}$ are not rel prime to p^a ?

Those elements are

$$\{p, 2p, 3p, \ldots, p^{a-1}p\}.$$

So there are p^{a-1} such elements.

So the number that are rel prime to p^a is

$$p^{a} - p^{a-2}$$

Using the last two problems, compute by hand: $\phi(3528)$.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Using the last two problems, compute by hand: $\phi(3528)$. SOLUTION

We first FACTOR 3528. Since the last digit is even, 2 divides it. TRICK: since the last 2 digits, 28, is div by 4, its div by 4.

Using the last two problems, compute by hand: $\phi(3528)$. SOLUTION

We first FACTOR 3528. Since the last digit is even, 2 divides it. TRICK: since the last 2 digits, 28, is div by 4, its div by 4.

 $3528 = 2^2 \times 882.$

Using the last two problems, compute by hand: $\phi(3528)$. **SOLUTION**

We first FACTOR 3528. Since the last digit is even, 2 divides it. TRICK: since the last 2 digits, 28, is div by 4, its div by 4.

 $3528 = 2^2 \times 882$. 882 is div by 2 so we get

Using the last two problems, compute by hand: $\phi(3528)$. SOLUTION

We first FACTOR 3528. Since the last digit is even, 2 divides it. TRICK: since the last 2 digits, 28, is div by 4, its div by 4.

 $3528 = 2^2 \times 882$. 882 is div by 2 so we get

 $3528 = 2^3 \times 441.$

Using the last two problems, compute by hand: $\phi(3528)$. SOLUTION

We first FACTOR 3528. Since the last digit is even, 2 divides it. TRICK: since the last 2 digits, 28, is div by 4, its div by 4.

 $3528 = 2^2 \times 882$. 882 is div by 2 so we get

 $3528 = 2^3 \times 441$. Sum of digits of 441 is 9, so $441 \equiv 0 \pmod{9}$.

Using the last two problems, compute by hand: $\phi(3528)$. **SOLUTION**

We first FACTOR 3528. Since the last digit is even, 2 divides it. TRICK: since the last 2 digits, 28, is div by 4, its div by 4.

 $3528 = 2^2 \times 882$. 882 is div by 2 so we get

 $3528 = 2^3 \times 441$. Sum of digits of 441 is 9, so $441 \equiv 0 \pmod{9}$. $3528 = 2^3 \times 3^2 \times 49 = 2^3 \times 3^2 \times 7^2$.

Using the last two problems, compute by hand: $\phi(3528)$. **SOLUTION**

We first FACTOR 3528. Since the last digit is even, 2 divides it. TRICK: since the last 2 digits, 28, is div by 4, its div by 4.

 $3528 = 2^2 \times 882$. 882 is div by 2 so we get $3528 = 2^3 \times 441$. Sum of digits of 441 is 9, so $441 \equiv 0 \pmod{9}$. $3528 = 2^3 \times 3^2 \times 49 = 2^3 \times 3^2 \times 7^2$.

$$\phi(2^3 3^2 7^2) = \phi(2^3)\phi(3^2)\phi(7^2) = (2^3 - 2^2)(3^2 - 3^1)(7^2 - 7^1)$$

$$= 4 \times 6 \times 42 = 1008$$

Its often said (correctly) If Factoring is easy than RSA can be cracked.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Its often said (correctly) If Factoring is easy than RSA can be cracked.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Recall that in RSA N = pq is public. p, q are private. $R = \phi(N) = (p - 1)(q - 1)$ is private. e is public and rel prime to R. d is private. Recall that $ed \equiv 1 \pmod{R}$.

Its often said (correctly) If Factoring is easy than RSA can be cracked.

ション ふゆ アメビア メロア しょうくしゃ

Recall that in RSA N = pq is public. p, q are private. $R = \phi(N) = (p - 1)(q - 1)$ is private. e is public and rel prime to R. d is private. Recall that $ed \equiv 1 \pmod{R}$.

If Eve knows d she can crack RSA.

Its often said (correctly) If Factoring is easy than RSA can be cracked.

ション ふゆ アメビア メロア しょうくしゃ

Recall that in RSA N = pq is public. p, q are private. $R = \phi(N) = (p - 1)(q - 1)$ is private. e is public and rel prime to R. d is private. Recall that $ed \equiv 1 \pmod{R}$.

If Eve knows d she can crack RSA.

We just showed that Factoring easy $\Rightarrow \phi$ easy.

Its often said (correctly) If Factoring is easy than RSA can be cracked.

Recall that in RSA N = pq is public. p, q are private. $R = \phi(N) = (p - 1)(q - 1)$ is private. e is public and rel prime to R. d is private. Recall that $ed \equiv 1 \pmod{R}$.

If Eve knows d she can crack RSA.

We just showed that Eastering easy $\rightarrow \phi$ as

Factoring easy $\Rightarrow \phi$ easy.

Putting it all together we get Factoring easy $\Rightarrow \phi$ easy \Rightarrow inv mod R easy \Rightarrow RSA cracked.

Its often said (correctly) If Factoring is easy than RSA can be cracked.

Recall that in RSA N = pq is public. p, q are private. $R = \phi(N) = (p - 1)(q - 1)$ is private. e is public and rel prime to R. d is private. Recall that $ed \equiv 1 \pmod{R}$.

If Eve knows d she can crack RSA.

We just showed that Eactoring easy $\rightarrow \phi$ easy

Factoring easy $\Rightarrow \phi$ easy.

Putting it all together we get Factoring easy $\Rightarrow \phi$ easy \Rightarrow inv mod R easy \Rightarrow RSA cracked.

Proving converses of any of the above would be interesting.

Its often said (correctly) If Factoring is easy than RSA can be cracked.

Recall that in RSA N = pq is public. p, q are private. $R = \phi(N) = (p - 1)(q - 1)$ is private. e is public and rel prime to R. d is private. Recall that $ed \equiv 1 \pmod{R}$.

If Eve knows d she can crack RSA.

We just showed that Factoring easy $\Rightarrow \phi$ easy.

Putting it all together we get Factoring easy $\Rightarrow \phi$ easy \Rightarrow inv mod *R* easy \Rightarrow RSA cracked.

Proving converses of any of the above would be interesting.

Next Slide has some possible futures!

Possible futures:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Possible futures:

1. Factoring easy! RSA is cracked!

Possible futures:

- 1. Factoring easy! RSA is cracked!
- 2. Factoring hard; ϕ easy! RSA is cracked!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Possible futures:

- 1. Factoring easy! RSA is cracked!
- 2. Factoring hard; ϕ easy! RSA is cracked!
- 3. Factoring hard; ϕ hard; The following easy: Given N = pq (but not p, q) and e rel prime to R = (p-1)(q-1) can find d such that $ed \equiv 1 \pmod{R}$.

Possible futures:

- 1. Factoring easy! RSA is cracked!
- 2. Factoring hard; ϕ easy! RSA is cracked!
- 3. Factoring hard; ϕ hard; The following easy: Given N = pq (but not p, q) and e rel prime to R = (p-1)(q-1) can find d such that $ed \equiv 1 \pmod{R}$.

4. RSA remains uncracked.

For (x, y) =(0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2), (2,1), (3,0), ...

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

For (x, y) =(0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2), (2,1), (3,0), ... **1**. Compute $M = 2^{x}3^{y}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

For (x, y) =(0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), ...

- 1. Compute $M = 2^{x}3^{y}$.
- 2. Compute $d = GCD(2^M 1 \mod 143, 143)$. (The (mod 143) keeps the numbers small.)

ション ふゆ アメビア メロア しょうくしゃ

For (x, y) =(0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), ...

- 1. Compute $M = 2^{x}3^{y}$.
- 2. Compute $d = GCD(2^M 1 \mod 143, 143)$. (The (mod 143) keeps the numbers small.)
- 3. If $d \neq 1$ and $d \neq 143$ then output d (it will divide 143) and BREAK OUT of the for loop.

$$(x, y) = (0, 1)$$
: $M = 2^0 \times 3^1 = 3$.
 $d = GCD(2^3 - 1 \pmod{143}, 143) = GCD(7, 143) = 1$. Darn!

▲□▶▲□▶▲□▶▲□▶ ■ りへぐ

$$(x, y) = (0, 1): M = 2^0 \times 3^1 = 3.$$

 $d = GCD(2^3 - 1 \pmod{143}, 143) = GCD(7, 143) = 1.$ Darn!
 $(x, y) = (1, 0): M = 2^1 \times 3^0 = 2.$
 $d = GCD(2^2 - 1 \pmod{143}, 143) = GCD(3, 143) = 1.$ Darn!

$$(x, y) = (0, 1): M = 2^{0} \times 3^{1} = 3.$$

$$d = GCD(2^{3} - 1 \pmod{143}, 143) = GCD(7, 143) = 1. \text{ Darn!}$$

$$(x, y) = (1, 0): M = 2^{1} \times 3^{0} = 2.$$

$$d = GCD(2^{2} - 1 \pmod{143}, 143) = GCD(3, 143) = 1. \text{ Darn!}$$

$$(x, y) = (0, 2): M = 2^{0} \times 3^{2} = 9.$$

$$d = GCD(2^{9} - 1 \pmod{143}, 143) = GCD(83, 143) = 1. \text{ Darn!}$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

$$\begin{array}{l} (x,y) = (0,1): \ M = 2^0 \times 3^1 = 3. \\ d = GCD(2^3 - 1 \ (\text{mod } 143), 143) = GCD(7, 143) = 1. \ \text{Darn!} \\ (x,y) = (1,0): \ M = 2^1 \times 3^0 = 2. \\ d = GCD(2^2 - 1 \ (\text{mod } 143), 143) = GCD(3, 143) = 1. \ \text{Darn!} \\ (x,y) = (0,2): \ M = 2^0 \times 3^2 = 9. \\ d = GCD(2^9 - 1 \ (\text{mod } 143), 143) = GCD(83, 143) = 1. \ \text{Darn!} \\ (x,y) = (1,1): \ M = 2^1 \times 3^1 = 6. \\ d = GCD(2^6 - 1 \ (\text{mod } 143), 143) = GCD(63, 143) = 1. \ \text{Darn!} \end{array}$$

(x, y) = (0, 1): $M = 2^0 \times 3^1 = 3$. $d = GCD(2^3 - 1 \pmod{143}, 143) = GCD(7, 143) = 1$. Darn! (x, y) = (1, 0): $M = 2^1 \times 3^0 = 2$. $d = GCD(2^2 - 1 \pmod{143}, 143) = GCD(3, 143) = 1$. Darn! (x, y) = (0, 2): $M = 2^0 \times 3^2 = 9$. $d = GCD(2^9 - 1 \pmod{143}, 143) = GCD(83, 143) = 1$. Darn! (x, y) = (1, 1): $M = 2^1 \times 3^1 = 6$. $d = GCD(2^6 - 1 \pmod{143}, 143) = GCD(63, 143) = 1$. Darn! (x, y) = (2, 0): $M = 2^2 \times 3^0 = 4$. $d = GCD(2^4 - 1 \pmod{143}, 143) = GCD(15, 143) = 1$. Darn!

(日) (日) (日) (日) (日) (日) (日) (日) (日)

HW07, Problem 5, Solution. Cont

$$(x, y) = (0, 3)$$
: $M = 2^0 \times 3^3 = 27$.
 $d = GCD(2^{27} - 1 \pmod{143}, 143) = GCD(72, 143) = 1$. Darn!

▲□▶▲□▶▲□▶▲□▶ ■ りへぐ

HW07, Problem 5, Solution. Cont

$$(x, y) = (0, 3)$$
: $M = 2^0 \times 3^3 = 27$.
 $d = GCD(2^{27} - 1 \pmod{143}, 143) = GCD(72, 143) = 1$. Darn!
 $(x, y) = (1, 2)$: $M = 2^1 \times 3^2 = 18$.
 $d = GCD(2^{18} - 1 \pmod{143}, 143) = GCD(24, 143) = 1$. Darn!

▲□▶▲□▶▲□▶▲□▶ ■ りへぐ

HW07, Problem 5, Solution. Cont

$$(x, y) = (0, 3): M = 2^0 \times 3^3 = 27.$$

 $d = GCD(2^{27} - 1 \pmod{143}, 143) = GCD(72, 143) = 1.$ Darn!
 $(x, y) = (1, 2): M = 2^1 \times 3^2 = 18.$
 $d = GCD(2^{18} - 1 \pmod{143}, 143) = GCD(24, 143) = 1.$ Darn!
 $(x, y) = (2, 1): M = 2^2 \times 3^1 = 12.$
 $d = GCD(2^{12} - 1 \pmod{143}, 143) = GCD(91, 143) = 13.$ Yeah!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで