Solutions to HW09 Problems

BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

HW09, Problem 2a

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.

HW09, Problem 2a

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
a) A wants to send 1 . Random vector is $(1,2,3,4)$. e is 2 . What does she send B ?

HW09, Problem 2a

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
a) A wants to send 1 . Random vector is $(1,2,3,4)$. e is 2 . What does she send B ? SOLUTION

HW09, Problem 2a

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
a) A wants to send 1 . Random vector is $(1,2,3,4)$. e is 2 . What does she send B ?
SOLUTION
A computes

HW09, Problem 2a

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
a) A wants to send 1 . Random vector is $(1,2,3,4)$. e is 2 . What does she send B ?

SOLUTION

A computes
$C=(11,100,39,4) \cdot(1,2,3,4)=11+200+117+16=344 \equiv 344$.

HW09, Problem 2a

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
a) A wants to send 1 . Random vector is $(1,2,3,4)$. e is 2 . What does she send B ?

SOLUTION

A computes
$C=(11,100,39,4) \cdot(1,2,3,4)=11+200+117+16=344 \equiv 344$.

$$
D \equiv C+e+\frac{b p}{4}=344+2+\frac{1009}{4}=346+252=598
$$

HW09, Problem 2a

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
a) A wants to send 1 . Random vector is $(1,2,3,4)$. e is 2 . What does she send B ?

SOLUTION

A computes
$C=(11,100,39,4) \cdot(1,2,3,4)=11+200+117+16=344 \equiv 344$.

$$
D \equiv C+e+\frac{b p}{4}=344+2+\frac{1009}{4}=346+252=598
$$

A sends (1, 2, 3, 4; 598).

HW09, Problem 2b

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.

HW09, Problem 2b

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
b) A wants to send 0 . Random vector is $(5,10,41,3)$. e is -1 . What does she send B?

HW09, Problem 2b

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
b) A wants to send 0 . Random vector is $(5,10,41,3)$. e is -1 . What does she send B? SOLUTION

HW09, Problem 2b

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
b) A wants to send 0 . Random vector is $(5,10,41,3)$. e is -1 . What does she send B? SOLUTION
A computes

HW09, Problem 2b

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
b) A wants to send 0 . Random vector is $(5,10,41,3)$. e is -1 . What does she send B? SOLUTION
A computes
$C=(11,100,39,4) \cdot(5,10,41,3)=55+1000+1599+12=2666 \equiv 648$.

HW09, Problem 2b

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
b) A wants to send 0 . Random vector is $(5,10,41,3)$. e is -1 . What does she send B?

SOLUTION

A computes
$C=(11,100,39,4) \cdot(5,10,41,3)=55+1000+1599+12=2666 \equiv 648$.

$$
D \equiv C+e+\frac{b p}{4}=648-1+0=647
$$

HW09, Problem 2b

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
b) A wants to send 0 . Random vector is $(5,10,41,3)$. e is -1 . What does she send B ?

SOLUTION

A computes
$C=(11,100,39,4) \cdot(5,10,41,3)=55+1000+1599+12=2666 \equiv 648$.

$$
D \equiv C+e+\frac{b p}{4}=648-1+0=647
$$

A sends (5, 10, 41, 3; 647).

HW09, Problem 2c

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.

HW09, Problem 2c

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
c) B gets $(12,39,44,19 ; 779)$ from A. What bit did A send?

HW09, Problem 2c

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
c) B gets $(12,39,44,19 ; 779)$ from A. What bit did A send? SOLUTION

HW09, Problem 2c

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
c) B gets $(12,39,44,19 ; 779)$ from A. What bit did A send? SOLUTION
B knows secret key $(11,100,39,4)$ so he computes:

HW09, Problem 2c

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
c) B gets $(12,39,44,19 ; 779)$ from A. What bit did A send? SOLUTION
B knows secret key $(11,100,39,4)$ so he computes:

$$
(11,100,39,4) \cdot(12,39,44,19)=5824 \equiv 779
$$

HW09, Problem 2c

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All \equiv are $\bmod 1009$.
c) B gets $(12,39,44,19 ; 779)$ from A. What bit did A send? SOLUTION
B knows secret key $(11,100,39,4)$ so he computes:

$$
(11,100,39,4) \cdot(12,39,44,19)=5824 \equiv 779
$$

779 is 0 away from 779 and $0<2$. So the bit is 0 .

HW09, Problem 3a

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$.
Everything is mod 2003.

HW09, Problem 3a

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$.
Everything is mod 2003.
A \& B think that E might be tampering with messages!

HW09, Problem 3a

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$. Everything is mod 2003.
A \& B think that E might be tampering with messages! Give an algorithm so that, if B gets ($r_{1}, r_{2}, r_{3}, r_{4} ; D$), he will output one of the following

HW09, Problem 3a

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$. Everything is mod 2003.
A \& B think that E might be tampering with messages! Give an algorithm so that, if B gets ($r_{1}, r_{2}, r_{3}, r_{4} ; D$), he will output one of the following

- A probably sent a 0 .

HW09, Problem 3a

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$. Everything is mod 2003.
A \& B think that E might be tampering with messages! Give an algorithm so that, if B gets ($r_{1}, r_{2}, r_{3}, r_{4} ; D$), he will output one of the following

- A probably sent a 0 .
- A probably sent a 1 .

HW09, Problem 3a

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$. Everything is mod 2003.
A \& B think that E might be tampering with messages! Give an algorithm so that, if B gets ($r_{1}, r_{2}, r_{3}, r_{4} ; D$), he will output one of the following

- A probably sent a 0 .
- A probably sent a 1 .
- E definitely tampered with the message.

HW09, Problem 3a

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$. Everything is mod 2003.
A \& B think that E might be tampering with messages! Give an algorithm so that, if B gets $\left(r_{1}, r_{2}, r_{3}, r_{4} ; D\right)$, he will output one of the following

- A probably sent a 0 .
- A probably sent a 1 .
- E definitely tampered with the message.

SOLUTION

HW09, Problem 3a

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$. Everything is mod 2003.
A \& B think that E might be tampering with messages! Give an algorithm so that, if B gets ($r_{1}, r_{2}, r_{3}, r_{4} ; D$), he will output one of the following

- A probably sent a 0 .
- A probably sent a 1 .
- E definitely tampered with the message.

SOLUTION

B receives $\left(r_{1}, r_{2}, r_{3}, r_{4} ; D\right)$.

HW09, Problem 3a

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$.
Everything is mod 2003.
A \& B think that E might be tampering with messages! Give an algorithm so that, if B gets ($r_{1}, r_{2}, r_{3}, r_{4} ; D$), he will output one of the following

- A probably sent a 0 .
- A probably sent a 1 .
- E definitely tampered with the message.

SOLUTION

B receives $\left(r_{1}, r_{2}, r_{3}, r_{4} ; D\right)$.
B finds the bit as usual: computes $C \equiv \vec{r} \cdot \vec{k}$.

HW09, Problem 3a

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$.
Everything is mod 2003.
A \& B think that E might be tampering with messages! Give an algorithm so that, if B gets ($r_{1}, r_{2}, r_{3}, r_{4} ; D$), he will output one of the following

- A probably sent a 0 .
- A probably sent a 1 .
- E definitely tampered with the message.

SOLUTION

B receives $\left(r_{1}, r_{2}, r_{3}, r_{4} ; D\right)$.
B finds the bit as usual: computes $C \equiv \vec{r} \cdot \vec{k}$.
If $|D-C| \leq 4$ then output \mathbf{A} probably sent a $\mathbf{0}$.

HW09, Problem 3a

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$.
Everything is mod 2003.
A \& B think that E might be tampering with messages! Give an algorithm so that, if B gets ($r_{1}, r_{2}, r_{3}, r_{4} ; D$), he will output one of the following

- A probably sent a 0 .
- A probably sent a 1 .
- E definitely tampered with the message.

SOLUTION

B receives $\left(r_{1}, r_{2}, r_{3}, r_{4} ; D\right)$.
B finds the bit as usual: computes $C \equiv \vec{r} \cdot \vec{k}$.
If $|D-C| \leq 4$ then output \mathbf{A} probably sent a $\mathbf{0}$.
If $\left|D-\left(C+\frac{p}{4}\right)\right| \leq 4$ then output \mathbf{A} probably sent a 1 .

HW09, Problem 3a

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$.
Everything is mod 2003.
A \& B think that E might be tampering with messages!
Give an algorithm so that, if B gets ($r_{1}, r_{2}, r_{3}, r_{4} ; D$), he will output one of the following

- A probably sent a 0 .
- A probably sent a 1 .
- E definitely tampered with the message.

SOLUTION

B receives $\left(r_{1}, r_{2}, r_{3}, r_{4} ; D\right)$.
B finds the bit as usual: computes $C \equiv \vec{r} \cdot \vec{k}$.
If $|D-C| \leq 4$ then output A probably sent a $\mathbf{0}$.
If $\left|D-\left(C+\frac{p}{4}\right)\right| \leq 4$ then output A probably sent a 1 .
If NEITHER then output E tampered with the message.

HW09, Problem 3b

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$. Everything is mod 2003.

HW09, Problem 3b

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$. Everything is mod 2003.
b) Use your algorithm on the following:
(1, 2, 3, 4; 5).
(11, 40, 99, 101; 245).

HW09, Problem 3b

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$. Everything is mod 2003.
b) Use your algorithm on the following:
(1, 2, 3, 4; 5).
(11, 40, 99, 101; 245).
SOLUTION
(1, 2, 3, 4; 5).

$$
C \equiv(1,2,3,4) \cdot(10,201,89,8) \equiv 711
$$

This is NOT close to 5 , nor is $711+500 \equiv 1211$, so TAMPERED WITH.

HW09, Problem 3b

A \& B do PRIV-LWE with $\vec{k}=(10,201,89,8), p=2003, \gamma=4$. Everything is mod 2003.
b) Use your algorithm on the following:
(1, 2, 3, 4; 5).
(11, 40, 99, 101; 245).
SOLUTION
(1, 2, 3, 4; 5).

$$
C \equiv(1,2,3,4) \cdot(10,201,89,8) \equiv 711
$$

This is NOT close to 5 , nor is $711+500 \equiv 1211$, so TAMPERED WITH.
(11, 40, 99, 101; 245).

$$
C \equiv(11,40,99,101) \cdot(10,201,89,8) \equiv 1745
$$

1745 is NOT 245.
But $1745+500 \equiv 242$ IS close to 245 . (It needs to be within 4 and it is) So A probably sent 1.

HW09, Problem 4

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All math is mod 1009.

HW09, Problem 4

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All math is mod 1009 .
E sees A send (7, 13, 22, 100; 618).

HW09, Problem 4

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All math is mod 1009.
E sees A send (7, 13, 22, 100; 618). She later finds out that this decoded to 0 .

HW09, Problem 4

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All math is mod 1009.
E sees A send (7, 13, 22, 100; 618).
She later finds out that this decoded to 0 .
Write down what she knows about $k_{1}, k_{2}, k_{3}, k_{4}$. SOLUTION
A knows
$7 k_{1}+13 k_{2}+22 k_{3}+100 k_{4} \in\{618-2,618-1,618,618+1,618+2\}$

HW09, Problem 4

A \& B do PRIV-LWE with $\vec{k}=(11,100,39,4), p=1009, \gamma=2$. All math is mod 1009.
E sees A send (7, 13, 22, 100; 618).
She later finds out that this decoded to 0 .
Write down what she knows about $k_{1}, k_{2}, k_{3}, k_{4}$.
SOLUTION
A knows
$7 k_{1}+13 k_{2}+22 k_{3}+100 k_{4} \in\{618-2,618-1,618,618+1,618+2\}$
so

$$
7 k_{1}+13 k_{2}+22 k_{3}+100 k_{4} \in\{616,617,618,619,620\}
$$

