Solutions to HW09 Problems
BILL, RECORD LECTURE!!!!!
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.
HW09, Problem 2a

A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.

a) A wants to send 1. Random vector is $(1, 2, 3, 4)$. e is 2. What does she send B?
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.

a) A wants to send 1. Random vector is $(1, 2, 3, 4)$. e is 2. What does she send B?

SOLUTION
A & B do PRIV-LWE with \(\vec{k} = (11, 100, 39, 4) \), \(p = 1009 \), \(\gamma = 2 \). All \(\equiv \) are mod 1009.

a) A wants to send 1. Random vector is \((1, 2, 3, 4)\). \(e \) is 2. What does she send B?

SOLUTION

A computes
A & B do PRIV-LWE with \(\vec{k} = (11, 100, 39, 4) \), \(p = 1009 \), \(\gamma = 2 \). All \(\equiv \) are mod 1009.

a) A wants to send 1. Random vector is \((1, 2, 3, 4)\). \(e \) is 2. What does she send B?

SOLUTION
A computes

\[
C = (11, 100, 39, 4) \cdot (1, 2, 3, 4) = 11 + 200 + 117 + 16 = 344 \equiv 344.
\]
A & B do PRIV-LWE with \(\vec{k} = (11, 100, 39, 4) \), \(p = 1009 \), \(\gamma = 2 \). All \(\equiv \) are mod 1009.

a) A wants to send 1. Random vector is \((1, 2, 3, 4)\). \(e \) is 2. What does she send B?

SOLUTION

A computes

\[
C = (11, 100, 39, 4) \cdot (1, 2, 3, 4) = 11 + 200 + 117 + 16 = 344 \equiv 344.
\]

\[
D \equiv C + e + \frac{bp}{4} = 344 + 2 + \frac{1009}{4} = 346 + 252 = 598.
\]
A & B do PRIV-LWE with \(\vec{k} = (11, 100, 39, 4) \), \(p = 1009 \), \(\gamma = 2 \). All \(\equiv \) are mod 1009.

a) A wants to send 1. Random vector is \((1, 2, 3, 4)\). \(e \) is 2. What does she send B?

SOLUTION

A computes

\[
C = (11, 100, 39, 4) \cdot (1, 2, 3, 4) = 11 + 200 + 117 + 16 = 344 \equiv 344.
\]

\[
D \equiv C + e + \frac{bp}{4} = 344 + 2 + \frac{1009}{4} = 346 + 252 = 598.
\]

A sends \((1, 2, 3, 4; 598)\).
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.
A & B do PRIV-LWE with \(\vec{k} = (11, 100, 39, 4) \), \(p = 1009 \), \(\gamma = 2 \). All \(\equiv \) are mod 1009.

b) A wants to send 0. Random vector is \((5, 10, 41, 3) \). \(e \) is \(-1\). What does she send B?
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.

b) A wants to send 0. Random vector is $(5, 10, 41, 3)$. e is -1. What does she send B?

SOLUTION

A computes $C = \vec{k} \cdot (5, 10, 41, 3) = 55 + 1000 + 1599 + 12 = 2666 \equiv 648$.

$D \equiv C + e + bp^4 = 648 - 1 + 0 = 647$.

A sends $(5, 10, 41, 3; 647)$.
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.

b) A wants to send 0. Random vector is $(5, 10, 41, 3)$. e is -1. What does she send B?

SOLUTION

A computes
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.

b) A wants to send 0. Random vector is $(5, 10, 41, 3)$. e is -1.
What does she send B?

SOLUTION

A computes

$$C = (11, 100, 39, 4) \cdot (5, 10, 41, 3) = 55 + 1000 + 1599 + 12 = 2666 \equiv 648.$$
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.

b) A wants to send 0. Random vector is $(5, 10, 41, 3)$. e is -1.
What does she send B?

SOLUTION
A computes

$$C = (11, 100, 39, 4) \cdot (5, 10, 41, 3) = 55 + 1000 + 1599 + 12 = 2666 \equiv 648.$$

$$D \equiv C + e + \frac{bp}{4} = 648 - 1 + 0 = 647.$$
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.

b) A wants to send 0. Random vector is $(5, 10, 41, 3)$. e is -1.

What does she send B?

SOLUTION

A computes

$$C = (11, 100, 39, 4) \cdot (5, 10, 41, 3) = 55 + 1000 + 1599 + 12 = 2666 \equiv 648.$$

$$D \equiv C + e + \frac{bp}{4} = 648 - 1 + 0 = 647.$$

A sends $(5, 10, 41, 3; 647)$.
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.
A & B do PRIV-LWE with \(\vec{k} = (11, 100, 39, 4) \), \(p = 1009 \), \(\gamma = 2 \). All \(\equiv \) are mod 1009.
c) B gets \((12, 39, 44, 19; 779)\) from A. What bit did A send?
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.

c) B gets $(12, 39, 44, 19; 779)$ from A. What bit did A send?

SOLUTION

B knows secret key $(11, 100, 39, 4)$ so he computes:

$$
(11, 100, 39, 4) \cdot (12, 39, 44, 19) = 5824 \equiv 779
$$

779 is 0 away from 779 and 0 < 2. So the bit is 0.
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.

c) B gets $(12, 39, 44, 19; 779)$ from A. What bit did A send?

SOLUTION

B knows secret key $(11, 100, 39, 4)$ so he computes:
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.

c) B gets $(12, 39, 44, 19; 779)$ from A. What bit did A send?

SOLUTION

B knows secret key $(11, 100, 39, 4)$ so he computes:

$$(11, 100, 39, 4) \cdot (12, 39, 44, 19) = 5824 \equiv 779$$
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All \equiv are mod 1009.

c) B gets $(12, 39, 44, 19; 779)$ from A. What bit did A send?

SOLUTION

B knows secret key $(11, 100, 39, 4)$ so he computes:

$$(11, 100, 39, 4) \cdot (12, 39, 44, 19) = 5824 \equiv 779$$

779 is 0 away from 779 and $0 < 2$. So the bit is 0.
HW09, Problem 3a

A & B do PRIV-LWE with $\vec{k} = (10, 201, 89, 8)$, $p = 2003$, $\gamma = 4$. Everything is mod 2003.

SOLUTION

B receives $(r_1, r_2, r_3, r_4; D)$. B finds the bit as usual: computes $C \equiv \vec{r} \cdot \vec{k}$.

If $|D - C| \leq 4$ then output A probably sent a 0.

If $|D - (C + p)\mod 2003| \leq 4$ then output A probably sent a 1.

If NEITHER then output E tampered with the message.
A & B do PRIV-LWE with $\vec{k} = (10, 201, 89, 8)$, $p = 2003$, $\gamma = 4$. Everything is mod 2003.

A & B think that E might be tampering with messages!
A & B do PRIV-LWE with $\tilde{k} = (10, 201, 89, 8)$, $p = 2003$, $\gamma = 4$. Everything is mod 2003.
A & B think that E might be tampering with messages!
Give an algorithm so that, if B gets $(r_1, r_2, r_3, r_4; D)$, he will output one of the following

- A probably sent a 0.
- A probably sent a 1.
- E definitely tampered with the message.
A & B do PRIV-LWE with $\vec{k} = (10, 201, 89, 8)$, $p = 2003$, $\gamma = 4$. Everything is mod 2003.

A & B think that E might be tampering with messages!

Give an algorithm so that, if B gets $(r_1, r_2, r_3, r_4; D)$, he will output one of the following:

- A probably sent a 0.
- A probably sent a 1.
- E definitely tampered with the message.
A & B do PRIV-LWE with $\vec{k} = (10, 201, 89, 8)$, $p = 2003$, $\gamma = 4$. Everything is mod 2003.
A & B think that E might be tampering with messages!
Give an algorithm so that, if B gets $(r_1, r_2, r_3, r_4; D)$, he will output one of the following

- A probably sent a 0.
- A probably sent a 1.
- E definitely tampered with the message.
HW09, Problem 3a

A & B do PRIV-LWE with $\vec{k} = (10, 201, 89, 8)$, $p = 2003$, $\gamma = 4$. Everything is mod 2003.
A & B think that E might be tampering with messages!
Give an algorithm so that, if B gets $(r_1, r_2, r_3, r_4; D)$, he will output one of the following
- A probably sent a 0.
- A probably sent a 1.
- E definitely tampered with the message.
A & B do PRIV-LWE with $\vec{k} = (10, 201, 89, 8)$, $p = 2003$, $\gamma = 4$. Everything is mod 2003.

A & B think that E might be tampering with messages!

Give an algorithm so that, if B gets $(r_1, r_2, r_3, r_4; D)$, he will output one of the following

- A probably sent a 0.
- A probably sent a 1.
- E definitely tampered with the message.

SOLUTION
A & B do PRIV-LWE with $\vec{k} = (10, 201, 89, 8)$, $p = 2003$, $\gamma = 4$. Everything is mod 2003.
A & B think that E might be tampering with messages!
Give an algorithm so that, if B gets $(r_1, r_2, r_3, r_4; D)$, he will output one of the following
- A probably sent a 0.
- A probably sent a 1.
- E definitely tampered with the message.

SOLUTION
B receives $(r_1, r_2, r_3, r_4; D)$.
A & B do PRIV-LWE with $\vec{k} = (10, 201, 89, 8)$, $p = 2003$, $\gamma = 4$. Everything is mod 2003.

A & B think that E might be tampering with messages!

Give an algorithm so that, if B gets $(r_1, r_2, r_3, r_4; D)$, he will output

one of the following

- A probably sent a 0.
- A probably sent a 1.
- E definitely tampered with the message.

SOLUTION

B receives $(r_1, r_2, r_3, r_4; D)$.

B finds the bit as usual: computes $C \equiv \vec{r} \cdot \vec{k}$.
A & B do PRIV-LWE with $\vec{k} = (10, 201, 89, 8)$, $p = 2003$, $\gamma = 4$. Everything is mod 2003.

A & B think that E might be tampering with messages!

Give an algorithm so that, if B gets $(r_1, r_2, r_3, r_4; D)$, he will output one of the following:

- A probably sent a 0.
- A probably sent a 1.
- E definitely tampered with the message.

SOLUTION

B receives $(r_1, r_2, r_3, r_4; D)$.

B finds the bit as usual: computes $C \equiv \vec{r} \cdot \vec{k}$.

If $|D - C| \leq 4$ then output **A probably sent a 0**.
A & B do PRIV-LWE with $\vec{k} = (10, 201, 89, 8)$, $p = 2003$, $\gamma = 4$. Everything is mod 2003.
A & B think that E might be tampering with messages!

Give an algorithm so that, if B gets $(r_1, r_2, r_3, r_4; D)$, he will output one of the following

- A probably sent a 0.
- A probably sent a 1.
- E definitely tampered with the message.

SOLUTION

B receives $(r_1, r_2, r_3, r_4; D)$.
B finds the bit as usual: computes $C \equiv \vec{r} \cdot \vec{k}$.
If $|D - C| \leq 4$ then output **A probably sent a 0**.
If $|D - (C + \frac{p}{4})| \leq 4$ then output **A probably sent a 1**.
HW09, Problem 3a

A & B do PRIV-LWE with \(\vec{k} = (10, 201, 89, 8) \), \(p = 2003 \), \(\gamma = 4 \). Everything is mod 2003.
A & B think that E might be tampering with messages!
Give an algorithm so that, if B gets \((r_1, r_2, r_3, r_4; D)\), he will output one of the following

- A probably sent a 0.
- A probably sent a 1.
- E definitely tampered with the message.

SOLUTION

B receives \((r_1, r_2, r_3, r_4; D)\).
B finds the bit as usual: computes \(C \equiv \vec{r} \cdot \vec{k} \).
If \(|D - C| \leq 4 \) then output **A probably sent a 0**.
If \(|D - (C + \frac{p}{4})| \leq 4 \) then output **A probably sent a 1**.
If NEITHER then output **E tampered with the message**.
HW09, Problem 3b

A & B do PRIV-LWE with \(k = (10, 201, 89, 8), p = 2003, \gamma = 4. \)
Everything is mod 2003.

\[C \equiv (1, 2, 3, 4) \cdot (10, 201, 89, 8) \equiv 711. \]
This is NOT close to 5, nor is 711 + 500 \(\equiv 1211 \), so TAMPERED WITH.

\[C \equiv (11, 40, 99, 101) \cdot (10, 201, 89, 8) \equiv 1745. \]
1745 is NOT 245. But 1745 + 500 \(\equiv 242 \) IS close to 245. (It needs to be within 4 and it is) So A probably sent 1.
HW09, Problem 3b

A & B do PRIV-LWE with $\vec{k} = (10, 201, 89, 8)$, $p = 2003$, $\gamma = 4$. Everything is mod 2003.

b) Use your algorithm on the following:

(1, 2, 3, 4; 5).

(11, 40, 99, 101; 245).
A & B do PRIV-LWE with $\vec{k} = (10, 201, 89, 8)$, $p = 2003$, $\gamma = 4$. Everything is mod 2003.

b) Use your algorithm on the following:

(1, 2, 3, 4; 5).
(11, 40, 99, 101; 245).

SOLUTION

(1, 2, 3, 4; 5).

\[C \equiv (1, 2, 3, 4) \cdot (10, 201, 89, 8) \equiv 711. \]

This is NOT close to 5, nor is $711 + 500 \equiv 1211$, so TAMPERED WITH.
HW09, Problem 3b

A & B do PRIV-LWE with \(\vec{k} = (10, 201, 89, 8) \), \(p = 2003 \), \(\gamma = 4 \).
Everything is mod 2003.
b) Use your algorithm on the following:
(1, 2, 3, 4; 5).
(11, 40, 99, 101; 245).

SOLUTION

\[
C \equiv (1, 2, 3, 4) \cdot (10, 201, 89, 8) \equiv 711.
\]
This is NOT close to 5, nor is \(711 + 500 \equiv 1211 \), so TAMPERED WITH.
(11, 40, 99, 101; 245).

\[
C \equiv (11, 40, 99, 101) \cdot (10, 201, 89, 8) \equiv 1745.
\]

1745 is NOT 245.
But \(1745 + 500 \equiv 242 \) IS close to 245. (It needs to be within 4 and it is) So A probably sent 1.
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All math is mod 1009.
A & B do PRIV-LWE with \(\vec{k} = (11, 100, 39, 4) \), \(p = 1009 \), \(\gamma = 2 \). All math is mod 1009.
E sees A send \((7, 13, 22, 100; 618)\).
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$. All math is mod 1009.
E sees A send (7, 13, 22, 100; 618).
She later finds out that this decoded to 0.
A & B do PRIV-LWE with \(\mathbf{k} = (11, 100, 39, 4) \), \(p = 1009 \), \(\gamma = 2 \). All math is mod 1009.
E sees A send \((7, 13, 22, 100; 618)\).
She later finds out that this decoded to 0.
Write down what she knows about \(k_1, k_2, k_3, k_4 \).

SOLUTION
A knows

\[
7k_1 + 13k_2 + 22k_3 + 100k_4 \in \{618 - 2, 618 - 1, 618, 618 + 1, 618 + 2\}
\]
A & B do PRIV-LWE with $\vec{k} = (11, 100, 39, 4)$, $p = 1009$, $\gamma = 2$.
All math is mod 1009.
E sees A send $(7, 13, 22, 100; 618)$.
She later finds out that this decoded to 0.
Write down what she knows about k_1, k_2, k_3, k_4.

SOLUTION

A knows

\[7k_1 + 13k_2 + 22k_3 + 100k_4 \in \{618 - 2, 618 - 1, 618, 618 + 1, 618 + 2\} \]

so

\[7k_1 + 13k_2 + 22k_3 + 100k_4 \in \{616, 617, 618, 619, 620\} \]