Solutions to HW10 Problems

BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

HW10, Problem 2

PRG: $G\left(b_{1} \cdots b_{n}\right)=b_{1} \cdots b_{n}\left(\sum_{i=1}^{n} b_{i}(\bmod 4)\right.$ written in binary $)$.

HW10, Problem 2

PRG: $G\left(b_{1} \cdots b_{n}\right)=b_{1} \cdots b_{n}\left(\sum_{i=1}^{n} b_{i}(\bmod 4)\right.$ written in binary $)$.
Give poly strategy for E for PRG-Game that wins $>\frac{1}{2}$ the time.

HW10, Problem 2

PRG: $G\left(b_{1} \cdots b_{n}\right)=b_{1} \cdots b_{n}\left(\sum_{i=1}^{n} b_{i}(\bmod 4)\right.$ written in binary $)$.
Give poly strategy for E for PRG-Game that wins $>\frac{1}{2}$ the time. Note when E is SURE that she wins and when she is NOT sure.

HW10, Problem 2

PRG: $G\left(b_{1} \cdots b_{n}\right)=b_{1} \cdots b_{n}\left(\sum_{i=1}^{n} b_{i}(\bmod 4)\right.$ written in binary $)$.
Give poly strategy for E for PRG-Game that wins $>\frac{1}{2}$ the time. Note when E is SURE that she wins and when she is NOT sure. Prove that E wins OVER half the time.

HW10，Problem 2 SOLUTION

[^0]
HW10, Problem 2 SOLUTION

1. E sees $b_{1} \cdots b_{n} b_{n+1} b_{n+2}$ and $c_{1} \cdots c_{n} c_{n+1} c_{n+2}$.

HW10, Problem 2 SOLUTION

1. E sees $b_{1} \cdots b_{n} b_{n+1} b_{n+2}$ and $c_{1} \cdots c_{n} c_{n+1} c_{n+2}$.
2. E computes $b_{1}+\cdots+b_{n}(\bmod 4)$, in binary $b_{n+1}^{\prime} b_{n+2}^{\prime}$.

HW10, Problem 2 SOLUTION

1. E sees $b_{1} \cdots b_{n} b_{n+1} b_{n+2}$ and $c_{1} \cdots c_{n} c_{n+1} c_{n+2}$.
2. E computes $b_{1}+\cdots+b_{n}(\bmod 4)$, in binary $b_{n+1}^{\prime} b_{n+2}^{\prime}$.
3. E computes $c_{1}+\cdots+c_{n}(\bmod 4)$, in binary $c_{n+1}^{\prime} c_{n+2}^{\prime}$.

HW10, Problem 2 SOLUTION

1. E sees $b_{1} \cdots b_{n} b_{n+1} b_{n+2}$ and $c_{1} \cdots c_{n} c_{n+1} c_{n+2}$.
2. E computes $b_{1}+\cdots+b_{n}(\bmod 4)$, in binary $b_{n+1}^{\prime} b_{n+2}^{\prime}$.
3. E computes $c_{1}+\cdots+c_{n}(\bmod 4)$, in binary $c_{n+1}^{\prime} c_{n+2}^{\prime}$.
4. $b_{n+1} b_{n+2} \neq b_{n+1}^{\prime} b_{n+2}^{\prime}$: E outputs \vec{b}. KNOWS won.

HW10, Problem 2 SOLUTION

1. E sees $b_{1} \cdots b_{n} b_{n+1} b_{n+2}$ and $c_{1} \cdots c_{n} c_{n+1} c_{n+2}$.
2. E computes $b_{1}+\cdots+b_{n}(\bmod 4)$, in binary $b_{n+1}^{\prime} b_{n+2}^{\prime}$.
3. E computes $c_{1}+\cdots+c_{n}(\bmod 4)$, in binary $c_{n+1}^{\prime} c_{n+2}^{\prime}$.
4. $b_{n+1} b_{n+2} \neq b_{n+1}^{\prime} b_{n+2}^{\prime}$: E outputs \vec{b}. KNOWS won.
5. $c_{n+1} c_{n+2} \neq c_{n+1}^{\prime} c_{n+2}^{\prime}$: E outputs \vec{c}. KNOWS won.

HW10, Problem 2 SOLUTION

1. E sees $b_{1} \cdots b_{n} b_{n+1} b_{n+2}$ and $c_{1} \cdots c_{n} c_{n+1} c_{n+2}$.
2. E computes $b_{1}+\cdots+b_{n}(\bmod 4)$, in binary $b_{n+1}^{\prime} b_{n+2}^{\prime}$.
3. E computes $c_{1}+\cdots+c_{n}(\bmod 4)$, in binary $c_{n+1}^{\prime} c_{n+2}^{\prime}$.
4. $b_{n+1} b_{n+2} \neq b_{n+1}^{\prime} b_{n+2}^{\prime}$: E outputs \vec{b}. KNOWS won.
5. $c_{n+1} c_{n+2} \neq c_{n+1}^{\prime} c_{n+2}^{\prime}$: E outputs \vec{c}. KNOWS won.
6. If neither occurs then then E clueless! Outputs \vec{b} and hopes.

HW10, Problem 2 SOLUTION

1. E sees $b_{1} \cdots b_{n} b_{n+1} b_{n+2}$ and $c_{1} \cdots c_{n} c_{n+1} c_{n+2}$.
2. E computes $b_{1}+\cdots+b_{n}(\bmod 4)$, in binary $b_{n+1}^{\prime} b_{n+2}^{\prime}$.
3. E computes $c_{1}+\cdots+c_{n}(\bmod 4)$, in binary $c_{n+1}^{\prime} c_{n+2}^{\prime}$.
4. $b_{n+1} b_{n+2} \neq b_{n+1}^{\prime} b_{n+2}^{\prime}$: E outputs \vec{b}. KNOWS won.
5. $c_{n+1} c_{n+2} \neq c_{n+1}^{\prime} c_{n+2}^{\prime}$: E outputs \vec{c}. KNOWS won.
6. If neither occurs then then E clueless! Outputs \vec{b} and hopes.
$\operatorname{Pr} \mathrm{E}$ LOSES is $\leq \mathrm{pr}$ rand string A picked, $r_{1} \cdots r_{n+2}$ has
$\sum_{i=1}^{n} r_{i} \bmod 4=r_{n+1} r_{n+2}$.

HW10, Problem 2 SOLUTION

1. E sees $b_{1} \cdots b_{n} b_{n+1} b_{n+2}$ and $c_{1} \cdots c_{n} c_{n+1} c_{n+2}$.
2. E computes $b_{1}+\cdots+b_{n}(\bmod 4)$, in binary $b_{n+1}^{\prime} b_{n+2}^{\prime}$.
3. E computes $c_{1}+\cdots+c_{n}(\bmod 4)$, in binary $c_{n+1}^{\prime} c_{n+2}^{\prime}$.
4. $b_{n+1} b_{n+2} \neq b_{n+1}^{\prime} b_{n+2}^{\prime}$: E outputs \vec{b}. KNOWS won.
5. $c_{n+1} c_{n+2} \neq c_{n+1}^{\prime} c_{n+2}^{\prime}$: E outputs \vec{c}. KNOWS won.
6. If neither occurs then then E clueless! Outputs \vec{b} and hopes.
$\operatorname{Pr} \mathrm{E}$ LOSES is $\leq \mathrm{pr}$ rand string A picked, $r_{1} \cdots r_{n+2}$ has
$\sum_{i=1}^{n} r_{i} \bmod 4=r_{n+1} r_{n+2}$.
Number of strings A can pick is 2^{n+2}.

HW10, Problem 2 SOLUTION

1. E sees $b_{1} \cdots b_{n} b_{n+1} b_{n+2}$ and $c_{1} \cdots c_{n} c_{n+1} c_{n+2}$.
2. E computes $b_{1}+\cdots+b_{n}(\bmod 4)$, in binary $b_{n+1}^{\prime} b_{n+2}^{\prime}$.
3. E computes $c_{1}+\cdots+c_{n}(\bmod 4)$, in binary $c_{n+1}^{\prime} c_{n+2}^{\prime}$.
4. $b_{n+1} b_{n+2} \neq b_{n+1}^{\prime} b_{n+2}^{\prime}$: E outputs \vec{b}. KNOWS won.
5. $c_{n+1} c_{n+2} \neq c_{n+1}^{\prime} c_{n+2}^{\prime}$: E outputs \vec{c}. KNOWS won.
6. If neither occurs then then E clueless! Outputs \vec{b} and hopes.
$\operatorname{Pr} \mathrm{E}$ LOSES is $\leq \mathrm{pr}$ rand string A picked, $r_{1} \cdots r_{n+2}$ has
$\sum_{i=1}^{n} r_{i} \bmod 4=r_{n+1} r_{n+2}$.
Number of strings A can pick is 2^{n+2}.
Number of strings A can pick with that property is 2^{n} since last two bits determined by 1st n bits.

HW10, Problem 2 SOLUTION

1. E sees $b_{1} \cdots b_{n} b_{n+1} b_{n+2}$ and $c_{1} \cdots c_{n} c_{n+1} c_{n+2}$.
2. E computes $b_{1}+\cdots+b_{n}(\bmod 4)$, in binary $b_{n+1}^{\prime} b_{n+2}^{\prime}$.
3. E computes $c_{1}+\cdots+c_{n}(\bmod 4)$, in binary $c_{n+1}^{\prime} c_{n+2}^{\prime}$.
4. $b_{n+1} b_{n+2} \neq b_{n+1}^{\prime} b_{n+2}^{\prime}$: E outputs \vec{b}. KNOWS won.
5. $c_{n+1} c_{n+2} \neq c_{n+1}^{\prime} c_{n+2}^{\prime}$: E outputs \vec{c}. KNOWS won.
6. If neither occurs then then E clueless! Outputs \vec{b} and hopes.
$\operatorname{Pr} \mathrm{E}$ LOSES is $\leq \mathrm{pr}$ rand string A picked, $r_{1} \cdots r_{n+2}$ has
$\sum_{i=1}^{n} r_{i} \bmod 4=r_{n+1} r_{n+2}$.
Number of strings A can pick is 2^{n+2}.
Number of strings A can pick with that property is 2^{n} since last two bits determined by 1st n bits.
Prob E loses is $\leq \frac{2^{n}}{2^{n+2}}=\frac{1}{4}$.

HW10, Problem 2 SOLUTION

1. E sees $b_{1} \cdots b_{n} b_{n+1} b_{n+2}$ and $c_{1} \cdots c_{n} c_{n+1} c_{n+2}$.
2. E computes $b_{1}+\cdots+b_{n}(\bmod 4)$, in binary $b_{n+1}^{\prime} b_{n+2}^{\prime}$.
3. E computes $c_{1}+\cdots+c_{n}(\bmod 4)$, in binary $c_{n+1}^{\prime} c_{n+2}^{\prime}$.
4. $b_{n+1} b_{n+2} \neq b_{n+1}^{\prime} b_{n+2}^{\prime}$: E outputs \vec{b}. KNOWS won.
5. $c_{n+1} c_{n+2} \neq c_{n+1}^{\prime} c_{n+2}^{\prime}$: E outputs \vec{c}. KNOWS won.
6. If neither occurs then then E clueless! Outputs \vec{b} and hopes.
$\operatorname{Pr} \mathrm{E}$ LOSES is $\leq \mathrm{pr}$ rand string A picked, $r_{1} \cdots r_{n+2}$ has
$\sum_{i=1}^{n} r_{i} \bmod 4=r_{n+1} r_{n+2}$.
Number of strings A can pick is 2^{n+2}.
Number of strings A can pick with that property is 2^{n} since last two bits determined by 1st n bits.
Prob E loses is $\leq \frac{2^{n}}{2^{n+2}}=\frac{1}{4}$.
Prob E wins is $\geq \frac{3}{4}$.

HW10, Problem 3

Not going over it- but tell me how it turned out.

HW10, Problem 4a

A \& B do Public Key LWE. $p=37, m=4, \gamma=4$.

HW10, Problem 4a

A \& B do Public Key LWE. $p=37, m=4, \gamma=4$.
A's private key: $(1,3,5,8,22)$.

HW10, Problem 4a

A \& B do Public Key LWE. $p=37, m=4, \gamma=4$.
A's private key: $(1,3,5,8,22)$.
Noisy equations Al makes public are:

$$
\begin{aligned}
2 k_{1}+4 k_{2}+6 k_{3}+8 k_{4}+18 k_{5} & \sim 24 \\
3 k_{1}+6 k_{2}+9 k_{3}+15 k_{4}+20 k_{5} & \sim 0 \\
& (\bmod 37) \\
4 k_{1}+5 k_{2}+6 k_{3}+7 k_{4}+9 k_{5} & \sim 7
\end{aligned} \quad(\bmod 37)
$$

HW10, Problem 4a

A \& B do Public Key LWE. $p=37, m=4, \gamma=4$.
A's private key: $(1,3,5,8,22)$.
Noisy equations Al makes public are:

$$
\begin{aligned}
2 k_{1}+4 k_{2}+6 k_{3}+8 k_{4}+18 k_{5} & \sim 24 \\
3 k_{1}+6 k_{2}+9 k_{3}+15 k_{4}+20 k_{5} & \sim 0 \\
& (\bmod 37) \\
4 k_{1}+5 k_{2}+6 k_{3}+7 k_{4}+9 k_{5} & \sim 7
\end{aligned} \quad(\bmod 37)
$$

B wants to send $b=0$. Chooses 1st \& 3rd eq.

HW10, Problem 4a

A \& B do Public Key LWE. $p=37, m=4, \gamma=4$.
A's private key: $(1,3,5,8,22)$.
Noisy equations Al makes public are:

$$
\begin{aligned}
2 k_{1}+4 k_{2}+6 k_{3}+8 k_{4}+18 k_{5} & \sim 24 \\
3 k_{1}+6 k_{2}+9 k_{3}+15 k_{4}+20 k_{5} & \sim 0 \\
& (\bmod 37) \\
4 k_{1}+5 k_{2}+6 k_{3}+7 k_{4}+9 k_{5} & \sim 7
\end{aligned} \quad(\bmod 37)
$$

B wants to send $b=0$. Chooses 1st \& 3rd eq.
What does he send?

HW10, Problem 4a, SOLUTION

B adds 1st and 3rd eq and adds $\frac{b p}{2}=0$ to the RHS :

$$
\begin{aligned}
2 k_{1}+4 k_{2}+6 k_{3}+8 k_{4}+18 k_{5} & \sim 24 \quad(\bmod 37) \\
4 k_{1}+5 k_{2}+6 k_{3}+7 k_{4}+9 k_{5} & \sim 7
\end{aligned}(\bmod 37)
$$

HW10, Problem 4a, SOLUTION

B adds 1st and 3rd eq and adds $\frac{b p}{2}=0$ to the RHS :

$$
\begin{aligned}
2 k_{1}+4 k_{2}+6 k_{3}+8 k_{4}+18 k_{5} & \sim 24 \\
4 k_{1}+5 k_{2}+6 k_{3}+7 k_{4}+9 k_{5} & \sim 7
\end{aligned}(\bmod 37)
$$

$$
6 k_{1}+9 k_{2}+12 k_{3}+15 k_{4}+27 k_{5} \sim 31+0=31 \quad(\bmod 37)
$$

HW10, Problem 4a, SOLUTION

B adds 1st and 3rd eq and adds $\frac{b p}{2}=0$ to the RHS :

$$
\begin{aligned}
2 k_{1}+4 k_{2}+6 k_{3}+8 k_{4}+18 k_{5} & \sim 24 \\
4 k_{1}+5 k_{2}+6 k_{3}+7 k_{4}+9 k_{5} & \sim 7
\end{aligned}(\bmod 37)
$$

$$
6 k_{1}+9 k_{2}+12 k_{3}+15 k_{4}+27 k_{5} \sim 31+0=31 \quad(\bmod 37)
$$

B sends (6, 9, 12, 15, 27; 31)

HW10, Problem 4b

B wants to send $b=1$. Uses 1 st and 4 th eqs. What does B send?

HW10, Problem 4b

B wants to send $b=1$. Uses 1 st and 4 th eqs. What does B send?

SOLUTION

B adds 1st and 4th eqs and adds $\frac{b p}{2}=\frac{37}{2}=18$ to RHS.

$$
\begin{aligned}
2 k_{1}+4 k_{2}+6 k_{3}+8 k_{4}+18 k_{5} & \sim 24 \\
10 k_{1}+9 k_{2}+8 k_{3}+7 k_{4}+6 k_{5} & \sim 7
\end{aligned}(\bmod 37)
$$

HW10, Problem 4b

B wants to send $b=1$. Uses 1 st and 4 th eqs. What does B send? SOLUTION
B adds 1st and 4th eqs and adds $\frac{b p}{2}=\frac{37}{2}=18$ to RHS.

$$
\begin{aligned}
2 k_{1}+4 k_{2}+6 k_{3}+8 k_{4}+18 k_{5} & \sim 24 \\
10 k_{1}+9 k_{2}+8 k_{3}+7 k_{4}+6 k_{5} & \sim 7
\end{aligned}(\bmod 37)
$$

$$
12 k_{1}+13 k_{3}+14 k_{3}+15 k_{4}+24 k_{5} \sim 31+18=12 \quad(\bmod 37)
$$

HW10, Problem 4b

B wants to send $b=1$. Uses 1 st and 4 th eqs. What does B send? SOLUTION
B adds 1st and 4th eqs and adds $\frac{b p}{2}=\frac{37}{2}=18$ to RHS.

$$
\begin{aligned}
2 k_{1}+4 k_{2}+6 k_{3}+8 k_{4}+18 k_{5} & \sim 24 \\
10 k_{1}+9 k_{2}+8 k_{3}+7 k_{4}+6 k_{5} & \sim 7
\end{aligned}(\bmod 37)
$$

$12 k_{1}+13 k_{3}+14 k_{3}+15 k_{4}+24 k_{5} \sim 31+18=12(\bmod 37)$
B sends (12, 13, 14, 15, 24; 12)

HW10, Problem 4c

A receives $17 k_{1}+11 k_{2}+15 k_{3}+21 k_{4}+29 k_{5} \sim 25(\bmod 37)$. What bit did B send?

HW10, Problem 4c

A receives $17 k_{1}+11 k_{2}+15 k_{3}+21 k_{4}+29 k_{5} \sim 25(\bmod 37)$. What bit did B send?

SOLUTION

A plugs in her private key $(1,3,5,8,22)$ and sees if what she gets is close to 25 or around 18 away from 25.

$$
17 \times 1+11 \times 3+15 \times 5+21 \times 8+29 \times 22 \equiv 6
$$

6 around 18 away from from 25 , so the bit is 1 .

HW10, Problem 4d

This turns out to be a terrible set of equation for secrecy. This is NOT because the the p, n, m are too small. There is ANOTHER reason. Speculate on what that is.

HW10, Problem 4d

This turns out to be a terrible set of equation for secrecy. This is NOT because the the p, n, m are too small. There is ANOTHER reason. Speculate on what that is.

Discuss

HW10, Problem 5

A, B, E playing cards scenario.
A and B want to establish a secret key of n bits.
What is m such that if start with (m, m, m) then can get n bits?

HW10, Problem 5

A, B, E playing cards scenario.
A and B want to establish a secret key of n bits.
What is m such that if start with (m, m, m) then can get n bits?
You wrote program for this.

HW10, Problem 5

A, B, E playing cards scenario.
A and B want to establish a secret key of n bits.
What is m such that if start with (m, m, m) then can get n bits?
You wrote program for this.
Discuss what you found.

[^0]: 4ロ〉4岛〉4 三〉

