Welcome to CMSC/MATH/ENEE 456: Cryptography
Today: Admin, Intro to Crypto, Shift Cipher
BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!!
Admin
Course Webpage:
Submit HW
Submit Midterm
Submit Final
Submit Optional Project
Look for Grades
Make regrade requests within a week of the HW being graded.
Course Website

- Syllabus
- Slides
- Homework
- Notes (not much)
- Pointer to University Policy
- Books of interest
- Pointer Fall 2020 version of this course
▶ Recordings of Lecturers (I hope)
Teacher and TAs

Teacher William Gasarch

TAs
- Kunal Mehta
- Seyed Sajjad Nezhadi (goes by middle name)
- Josh Twitty

TA and Teacher office hours and emails are on syllabus.

Location of Office Hours
- William Gasarch: Brenden Iribe Building 2242.
- TAs: AV Williams 4166.

ALL CS TAS
http://www.cs.umd.edu/class/resources/cstarooms/fallspring/
Teacher and TAs

Teacher William Gasarch
TAs
 ▶ Kunal Mehta
 ▶ Seyed Sajjad Nezhadi (goes by middle name)
 ▶ Josh Twitty

TA and Teacher office hours and emails are on syllabus.
Location of Office Hours
William Gasarch Brendan Iribe Building 2242.
TAs AV Williams 4166.
ALL CS TAS http://www.cs.umd.edu/class/resources/cstarooms/fallspring/
What You Need For This Class

- Discrete math, probability, modular arithmetic, algorithms, misc math.
- Mathematical maturity.
- Ability to write short to middle-sized programs. (This is not a course like Operating systems where the project is a large part of the course intellectually and for the grade.)
How to Get the Most Out of This Class

1. Read notes and slides before class.

2. Ask questions on Piazza and/or bring questions to class.

3. This course will be recorded so can catch up or review.
 Caution
How to Get the Most Out of This Class

1. Read notes and slides before class.

2. Ask questions on Piazza and/or bring questions to class.

3. This course will be recorded so can catch up or review.

 Caution

 3.1 If cut class and DO watch videos in sync, fine.
 3.2 If cut class and INTEND to watch videos in sync, **not fine**.
 3.3 Recording might not always work.
HWs/exams

▶ HWs most weeks.

▶ HWs most weeks.

▶ Due Tuesday before class begins. But see next item.

▶ Dead Cat Policy: Can submit HW Thu before class without penalty.

▶ WARNING: YOU have already been given an extension, HWs solutions will be posted on Thu, so NO extensions past that.

▶ We will keep track of your lateness NOT for grade, but for recommendation letters.
HWs/exams

- HWs most weeks.
- Due Tuesday **before** class begins. But see next item.
HWs/exams

- HWs most weeks.
- Due Tuesday **before** class begins. But see next item.
- **Dead Cat Policy:** Can submit HW Thu **before** class without penalty.
HWs/exams

- HWs most weeks.
- Due Tuesday **before** class begins. But see next item.
- **Dead Cat Policy:** Can submit HW Thu **before** class without penalty.
- **WARNING:** YOU have already been given an extension, HW solutions will be posted on Thu, so NO extensions past that.
HWs/exams

- HWs most weeks.
- Due Tuesday before class begins. But see next item.
- **Dead Cat Policy:** Can submit HW Thu before class without penalty.
- **WARNING:** YOU have already been given an extension, HW solutions will be posted on Thu, so NO extensions past that.
- We will keep track of your lateness NOT for grade, but for recommendation letters.
Textbook

Required Text None.

Recommended Text None.
Required Text None.
Recommended Text None.
There will be notes, slides, and recordings of lecture online.
How to contact Prof or TAs

▶ email: Please put “456” in subject line.

▶ Office hours

▶ Piazza
Intro To Cryptography
Crypto Is. . .

- Crypto is amazing.
 - Can do things that initially seem impossible. Example: Alice and Bob can establish a secret key without meeting.

- Crypto is important. Example: Secure financial transactions.
 - It impacts us every day Example: The last time you used a credit card you used crypto.

- Crypto is fun! Example: Making and breaking codes!
Crypto Is Not...

James Bond is fictional.

James Bond is a drunk.

See article on course notes website: License to Swill.

James Bond's Villains are stupid.

See video on course notes website Goodbye Mr. Bond.

Seriously:Spying depends a lot more on Math than on Fancy Tuxedos.
James Bond
Crypto Is Not...

James Bond

- James Bond is fictional.

- James Bond is a drunk. See article on course notes website: License to Swill.

- James Bond's Villains are stupid. See video on course notes website: Goodbye Mr. Bond.

Seriously: Spying depends a lot more on Math than on Fancy Tuxedos.
Crypto Is Not...

James Bond

- James Bond is fictional.
- James Bond is a drunk.

See article on course notes website: *License to Swill.*
Crypto Is Not...

James Bond

- James Bond is fictional.
- James Bond is a drunk.

 See article on course notes website: *License to Swill*.

- James Bond’s Villains are stupid.

 See video on course notes website *Goodbye Mr. Bond*.
Crypto Is Not...

James Bond

- James Bond is fictional.
- James Bond is a drunk.
 See article on course notes website: *License to Swill.*
- James Bond’s Villains are stupid.
 See video on course notes website *Goodbye Mr. Bond.*

Seriously: Spying depends a lot more on **Math** than on **Fancy Tuxedos.**
Classical VS Modern Cryptography

Classical: (1900 BC?–1975)

2. WWII: They used people good at crossword puzzles (see course website for an article on this).
3. Turing and others brought math into it, but not much math compared to Modern.

Modern: (1976–today)

1. Lots of Math. Lots of Rigor.
2. The notion of Provably Secure important.

Note: The cutoff of 1975–1976 is approximate since History of Crypto is hard and sometimes secret.
Classical: (1900 BC?–1975)

Classical VS Modern Cryptography

Classical: (1900 BC?–1975)

2. WWII: They used people good at crossword puzzles (see course website for an article on this).

Modern: (1976–today)

1. Lots of Math. Lots of Rigor.
2. The notion of Provably Secure important.

Note: The cutoff of 1975–1976 is approximate since History of Crypto is hard and sometimes secret.
Classical VS Modern Cryptography

Classical: (1900 BC?–1975)

2. WWII: They used people good at crossword puzzles (see course website for an article on this).
3. Turing and others brought math into it, but not much math compared to **Modern**.
Classical VS Modern Cryptography

Classical: (1900 BC?–1975)

2. WWII: They used people good at crossword puzzles (see course website for an article on this).
3. Turing and others brought math into it, but not much math compared to **Modern**.

Modern: (1976-today)
Classical VS Modern Cryptography

Classical: (1900 BC?–1975)
2. WWII: They used people good at crossword puzzles (see course website for an article on this).
3. Turing and others brought math into it, but not much math compared to Modern.

Modern: (1976-today)
1. Lots of Math. Lots of Rigor.
Classical VS Modern Cryptography

Classical: (1900 BC?–1975)

2. WWII: They used people good at crossword puzzles (see course website for an article on this).
3. Turing and others brought math into it, but not much math compared to **Modern**.

Modern: (1976-today)

1. Lots of Math. Lots of Rigor.
2. The notion of **Provably Secure** important.
Classical VS Modern Cryptography

Classical: (1900 BC?–1975)

2. WWII: They used people good at crossword puzzles (see course website for an article on this).
3. Turing and others brought math into it, but not much math compared to **Modern**.

Modern: (1976-today)

1. Lots of Math. Lots of Rigor.
2. The notion of **Provably Secure** important.

Note: The cutoff of 1975–1976 is approximate since History of Crypto is hard and sometimes secret.
We Begin With Classical Cryptography

Why study Classical Cryptography?
We Begin With Classical Cryptography

Why study Classical Cryptography?

▶ Learn Math that will be used for Modern Crypto (e.g., Mod arithmetic).
We Begin With Classical Cryptography

Why study Classical Cryptography?

▶ Learn Math that will be used for Modern Crypto (e.g., Mod arithmetic).

▶ Shows why unprincipled approaches are dangerous (unprincipled means not-rigorous, not immoral).
We Begin With Classical Cryptography

Why study Classical Cryptography?

- Learn Math that will be used for Modern Crypto (e.g., Mod arithmetic).

- Shows why unprincipled approaches are dangerous (unprincipled means not-rigorous, not immoral).

- Illustrates why things are more difficult than they may appear.
Why study Classical Cryptography?

- Learn Math that will be used for Modern Crypto (e.g., Mod arithmetic).

- Shows why unprincipled approaches are dangerous (unprincipled means not-rigorous, not immoral).

- Illustrates why things are more difficult than they may appear.

- Simple examples of what will later be advanced concepts.
The Course’s Main Scenario
Alice, Bob, and Eve

Alice sends a message to Bob in code.

Eve overhears it.

Alice and Bob want Eve to not be able to decode it. This can mean one of two things:

- Eve does not have enough information to decode it. So even if Eve had unlimited computing power she could not decode. This is Information-Theoretic Security.
- Assuming Eve can’t factor quickly (or some other computational limitation) then Eve cannot break the code. This is Computational Security.
Alice, Bob, and Eve

- Alice sends a message to Bob in code.
Alice, Bob, and Eve

- Alice sends a message to Bob in code.
- Eve overhears it.

Alice and Bob want Eve to not be able to decode it. This can mean one of two things:

- Eve does not have enough information to decode it. So even if Eve had unlimited computing power she could not decode. This is Information-Theoretic Security.
- Assuming Eve can't factor quickly (or some other computational limitation) then Eve cannot break the code. This is Computational Security.
Alice, Bob, and Eve

- Alice sends a message to Bob in code.
- Eve overhears it.
- Alice and Bob want Eve to **not** be able to decode it.

This can mean one of two things:

- Eve does not have enough information to decode it. So even if Eve had unlimited computing power she could not decode. This is Information-Theoretic Security.
- Assuming Eve can't factor quickly (or some other computational limitation) then Eve cannot break the code. This is Computational Security.
Alice, Bob, and Eve

- Alice sends a message to Bob in code.
- Eve overhears it.
- Alice and Bob want Eve to not be able to decode it.

This can mean one of two things:
Alice, Bob, and Eve

▶ Alice sends a message to Bob in code.

▶ Eve overhears it.

▶ Alice and Bob want Eve to not be able to decode it. This can mean one of two things:

▶ Eve does not have enough information to decode it. So even if Eve had unlimited computing power she could not decode. This is Information-Theoretic Security.
Alice, Bob, and Eve

- Alice sends a message to Bob in code.

- Eve overhears it.

- Alice and Bob want Eve to not be able to decode it.

This can mean one of two things:

- Eve does not have enough information to decode it. So even if Eve had unlimited computing power she could not decode. This is **Information-Theoretic Security**.

- Assuming Eve can’t factor quickly (or some other computational limitation) then Eve cannot break the code. This is **Computational Security**.
The First Step in Any Cipher: Spaces

Alice wants to encode:

Cryptography is an important part of security
The First Step in Any Cipher: Spaces

Alice wants to encode:

Cryptography is an important part of security

She uses SHIFT-BY-1 to get:
The First Step in Any Cipher: Spaces

Alice wants to encode:

Cryptography is an important part of security
She uses SHIFT-BY-1 to get:

Dszip hypersbiz jt bo jnqpsubou qbsu pg tfdvvsjuz
Alice wants to encode:

Cryptography is an important part of security

She uses SHIFT-BY-1 to get:

Dszquphsbiz jt bo jnqpsubou qbsu pg tfdvsjuz

Without any fancy math Eve knows that the second and third word are two letters long. That's information she can use!
Alice wants to encode:

Cryptography is an important part of security

She uses SHIFT-BY-1 to get:

Dszquphsbiz jt bo jnqpsubou qbsu pg tfdvsjuz

Without any fancy math Eve knows that the second and third word are two letters long. Thats information she can use!

Alice needs to hide spacing information. What to do?
The Second Step in Any Cipher: Blocks of Five

Alice wants to encode

Cryptography is an important part of security and then codes it. Because of blocks-of-five, spaces will not give anything away.
Alice wants to encode

Cryptography is an important part of security
The Second Step in Any Cipher: Blocks of Five

Alice wants to encode

Cryptography is an important part of security

She break the message into blocks of 5:

Crypt ograp hyisa nimpo rtant parto fsecu rity

and then codes it.
Alice wants to encode

Cryptography is an important part of security

She break the message into blocks of 5:

Crypt ograp hyisa nimpo rtant parto fsecu rity

and then codes it.

Because of blocks-of-5, spaces will not give anything away.
The First Step in Any Cipher-Other Issues

I want to encode:

Are my TAs for CMSC/MATH/ENEE 456 awesome? YES!
The First Step in Any Cipher-Other Issues

I want to encode:

Are my TAs for CMSC/MATH/ENEE 456 awesome? YES!

1. Capital and small letters leak information.
The First Step in Any Cipher-Other Issues

I want to encode:

Are my TAs for CMSC/MATH/ENEE 456 awesome? YES!

The First Step in Any Cipher-Other Issues

I want to encode:

Are my TAs for CMSC/MATH/ENEE 456 awesome? YES!

2. Punctuation leaks information.
The First Step in Any Cipher—Other Issues

I want to encode:

Are my TAs for CMSC/MATH/ENEE 456 awesome? YES!

2. Punctuation leaks information. Get rid of all punctuation.
The First Step in Any Cipher-Other Issues

I want to encode:

Are my TAs for CMSC/MATH/ENEE 456 awesome? YES!

2. Punctuation leaks information. Get rid of all punctuation.
3. What to do about numbers?
The First Step in Any Cipher-Other Issues

I want to encode:

Are my TAs for CMSC/MATH/ENEE 456 awesome? YES!

1. Capital and small letters leak information.
 Map everything to Capitals.

2. Punctuation leaks information.
 Get rid of all punctuation.

3. What to do about numbers?
 Just like letters- alphabet is 36 characters.
I want to encode:

Are my TAs for CMSC/MATH/ENEE 456 awesome? YES!

1. Capital and small letters leak information.
 Map everything to Capitals.
2. Punctuation leaks information.
 Get rid of all punctuation.
3. What to do about numbers?
 Just like letters- alphabet is 36 characters.
 More generally, we will take into account alphabet size.
I want to encode:

Are my TAs for CMSC/MATH/ENEE 456 awesome? YES!

1. Capital and small letters leak information.
 Map everything to Capitals.
2. Punctuation leaks information.
 Get rid of all punctuation.
3. What to do about numbers?
 Just like letters- alphabet is 36 characters.
 More generally, we will take into account alphabet size.

Note: We assume a, \ldots, z unless otherwise noted.
BILL, TURN OFF RECORDING

BILL TURN OFF RECORDING!!!