BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!
Reminder

Types of Attacks
Recall Types of Attacks

Ciphertext Only Attack (COA) Eve just gets to see ciphertext.
Recall Types of Attacks

Ciphertext Only Attack (COA) Eve just gets to see ciphertext.

Known Plaintext Attack (KPA) Eve just gets to see ciphertext and some old ciphertext-plaintext pairs.
Recall Types of Attacks

Ciphertext Only Attack (COA) Eve just gets to see ciphertext.

Known Plaintext Attack (KPA) Eve just gets to see ciphertext and some old ciphertext-plaintext pairs.

Brute Force Attack (BFA) Try every key.
Recall Types of Attacks

Ciphertext Only Attack (COA) Eve just gets to see ciphertext.

Known Plaintext Attack (KPA) Eve just gets to see ciphertext and some old ciphertext-plaintext pairs.

Brute Force Attack (BFA) Try every key.

For all of these attacks. Eve’s goal is to find out something about the plaintext she did not already know.
Finding out what was sent is not the only measure of success.
Learning With Errors: Private Key
Solving a System of Equations over Mod

Quick, find a solution to

\[40k_1 + 28k_2 + 111k_3 + 7k_4 \equiv 19 \pmod{191}\].

One answer is \(k_1 = 170, k_2 = 39, k_3 = 3, k_4 = 1\).

How did I know \((170, 39, 3, 1)\) worked?

Am I a math genius?

(Spoiler Alert: No)
Solving a System of Equations over Mod

Quick, find a solution to

\[40k_1 + 28k_2 + 111k_3 + 7k_4 \equiv 19 \pmod{191}. \]

One answer is \(k_1 = 170, k_2 = 39, k_3 = 3, k_4 = 1 \):
Quick, find a solution to

$$40k_1 + 28k_2 + 111k_3 + 7k_4 \equiv 19 \pmod{191}.$$

One answer is $k_1 = 170, k_2 = 39, k_3 = 3, k_4 = 1:

$$40 \times 170 + 28 \times 39 + 111 \times 3 + 7 \times 1 \equiv -40 \times 21 + 137 + 340$$

$$\equiv -840 + 137 + 149 \equiv -76 + 137 + 149 \equiv 19$$
Solving a System of Equations over Mod

Quick, find a solution to

\[40k_1 + 28k_2 + 111k_3 + 7k_4 \equiv 19 \pmod{191} \]

One answer is \(k_1 = 170, k_2 = 39, k_3 = 3, k_4 = 1 \):

\[
40 \times 170 + 28 \times 39 + 111 \times 3 + 7 \times 1 \equiv -40 \times 21 + 137 + 340 \\
\equiv -840 + 137 + 149 \equiv -76 + 137 + 149 \equiv 19
\]

How did I know \((170, 39, 3, 1)\) worked?
Solving a System of Equations over Mod

Quick, find a solution to

\[40k_1 + 28k_2 + 111k_3 + 7k_4 \equiv 19 \pmod{191}. \]

One answer is \(k_1 = 170, k_2 = 39, k_3 = 3, k_4 = 1 \):

\[
40 \times 170 + 28 \times 39 + 111 \times 3 + 7 \times 1 \equiv -40 \times 21 + 137 + 340 \\
\equiv -840 + 137 + 149 \equiv -76 + 137 + 149 \equiv 19
\]

How did I know \((170, 39, 3, 1)\) worked? Am I a math genius?
Solving a System of Equations over Mod

Quick, find a solution to

\[40k_1 + 28k_2 + 111k_3 + 7k_4 \equiv 19 \pmod{191}. \]

One answer is \(k_1 = 170, k_2 = 39, k_3 = 3, k_4 = 1: \)

\[40 \times 170 + 28 \times 39 + 111 \times 3 + 7 \times 1 \equiv -40 \times 21 + 137 + 340 \]

\[\equiv -840 + 137 + 149 \equiv -76 + 137 + 149 \equiv 19 \]

How did I know \((170, 39, 3, 1)\) worked? Am I a math genius? (Spoiler Alert: No)
I Swapped Question and Answer!

On the TV show JEOPARDY the host gives the **answer** and the players give the **question**. Same here.
I Swapped Question and Answer!

On the TV show JEOPARDY the host gives the answer and the players give the question. Same here.

For a version of the Jeopardy theme song with words see https://www.youtube.com/watch?v=A7UgxCayfV0
I Swapped Question and Answer!

On the TV show JEOPARDY the host gives the answer and the players give the question. Same here.

For a version of the Jeopardy theme song with words see https://www.youtube.com/watch?v=A7UgxCayfV0

Back to our story.
Our domain is mod 191 throughout.
I Swapped Question and Answer!

On the TV show JEOPARDY the host gives the answer and the players give the question. Same here.

For a version of the Jeopardy theme song with words see https://www.youtube.com/watch?v=A7UgxCayfV0

Back to our story.

Our domain is mod 191 throughout.

1. I pick 4 random numbers: 170, 39, 3, 1 to be my answer.
I Swapped Question and Answer!

On the TV show JEOPARDY the host gives the answer and the players give the question. Same here.

For a version of the Jeopardy theme song with words see https://www.youtube.com/watch?v=A7UgxCayfV0

Back to our story.

Our domain is mod 191 throughout.

1. I pick 4 random numbers: 170, 39, 3, 1 to be my answer.
2. I pick 4 random numbers: 40, 28, 111, 7 to be coefficients.
On the TV show JEOPARDY the host gives the answer and the players give the question. Same here.

For a version of the Jeopardy theme song with words see https://www.youtube.com/watch?v=A7UgxCayfV0

Back to our story.
Our domain is mod 191 throughout.

1. I pick 4 random numbers: 170, 39, 3, 1 to be my answer.
2. I pick 4 random numbers: 40, 28, 111, 7 to be coefficients.
3. I calculated $170 \times 40 + 39 \times 28 + 3 \times 111 + 1 \times 7 \equiv 19$.
I Swapped Question and Answer!

On the TV show JEOPARDY the host gives the answer and the players give the question. Same here.

For a version of the Jeopardy theme song with words see https://www.youtube.com/watch?v=A7UgxCayfV0

Back to our story.

Our domain is mod 191 throughout.

1. I pick 4 random numbers: 170, 39, 3, 1 to be my answer.
2. I pick 4 random numbers: 40, 28, 111, 7 to be coefficients.
3. I calculated $170 \times 40 + 39 \times 28 + 3 \times 111 + 1 \times 7 \equiv 19$.
4. I know $40k_1 + 28k_2 + 111zk_3 + 7k_4 \equiv 19 \pmod{191}$ has answer $(170, 39, 3, 1)$.
Important Definition: DOT Product

We redo our math and introduce a notation.
Important Definition: DOT Product

We redo our math and introduce a notation.

1. I pick 4 random numbers: 170, 39, 3, 1 to be my answer.
Important Definition: DOT Product

We redo our math and introduce a notation.

1. I pick 4 random numbers: 170, 39, 3, 1 to be my answer.
2. I pick 4 random numbers: 40, 28, 111, 7 to be coefficients.

We calculated $170 \times 40 + 39 \times 28 + 3 \times 111 + 1 \times 7 \equiv 19$.

Generally:

$\left(k_1, \ldots, k_n \right) \cdot \left(r_1, \ldots, r_n \right) = k_1 \times r_1 + \cdots + k_n \times r_n$.

We will always be doing this Mod p.
Important Definition: DOT Product

We redo our math and introduce a notation.

1. I pick 4 random numbers: 170, 39, 3, 1 to be my answer.
2. I pick 4 random numbers: 40, 28, 111, 7 to be coefficients.
3. I calculated $170 \times 40 + 39 \times 28 + 3 \times 111 + 1 \times 7 \equiv 19$.
Important Definition: DOT Product

We redo our math and introduce a notation.

1. I pick 4 random numbers: 170, 39, 3, 1 to be my answer.
2. I pick 4 random numbers: 40, 28, 111, 7 to be coefficients.
3. I calculated \(170 \times 40 + 39 \times 28 + 3 \times 111 + 1 \times 7 \equiv 19\).
4. This is called the Dot Product
Important Definition: DOT Product

We redo our math and introduce a notation.

1. I pick 4 random numbers: 170, 39, 3, 1 to be my answer.
2. I pick 4 random numbers: 40, 28, 111, 7 to be coefficients.
3. I calculated $170 \times 40 + 39 \times 28 + 3 \times 111 + 1 \times 7 \equiv 19$.
4. This is called the Dot Product

Generally:

$$(k_1, \ldots, k_n) \cdot (r_1, \ldots, r_n) = k_1 \times r_1 + \cdots + k_n \times r_n.$$

We will always be doing this Mod p.
Example of an Idea for a Cipher

1. Alice and Bob both have private key (170, 39, 3, 1).
2. If Alice wants to send 0 she sends Bob an equation that (170, 39, 3, 1) DOES solve. She can generate such an equation as I did above.
3. If Alice wants to send 1 she sends Bob an equation that (170, 39, 3, 1) DOES NOT solve. She can generate such an equation by doing what I did above and add 1.

▶ Would use a bigger mod and a longer equation in real life.
▶ This cipher only allows transmitting one bit.
Example of an Idea for a Cipher

1. Alice and Bob both have private key $(170, 39, 3, 1)$. Alice and Bob and Eve have public Key 191.

Would use a bigger mod and a longer equation in real life.

This cipher only allows transmitting one bit.
Example of an Idea for a Cipher

1. Alice and Bob both have private key \((170, 39, 3, 1)\). Alice and Bob and Eve have public Key 191.

2. If Alice wants to send 0 she sends Bob an equation that \((170, 39, 3, 1)\) DOES solve. She can generate such an equation as I did above.

 ▶ Would use a bigger mod and a longer equation in real life.

 ▶ This cipher only allows transmitting one bit.
Example of an Idea for a Cipher

1. Alice and Bob both have private key \((170, 39, 3, 1)\). Alice and Bob and Eve have public Key 191.

2. If Alice wants to send 0 she sends Bob an equation that \((170, 39, 3, 1)\) DOES solve. She can generate such an equation as I did above.

3. If Alice wants to send 1 she sends Bob an equation that \((170, 39, 3, 1)\) DOES NOT solve. She can generate such an equation by doing what I did above and add 1.
Example of an Idea for a Cipher

1. Alice and Bob both have private key $(170, 39, 3, 1)$. Alice and Bob and Eve have public Key 191.

2. If Alice wants to send 0 she sends Bob an equation that $(170, 39, 3, 1)$ DOES solve. She can generate such an equation as I did above.

3. If Alice wants to send 1 she sends Bob an equation that $(170, 39, 3, 1)$ DOES NOT solve. She can generate such an equation by doing what I did above and add 1.

▶ Would use a bigger mod and a longer equation in real life.
Example of an Idea for a Cipher

1. Alice and Bob both have private key \((170, 39, 3, 1)\). Alice and Bob and Eve have public Key 191.

2. If Alice wants to send 0 she sends Bob an equation that \((170, 39, 3, 1)\) DOES solve. She can generate such an equation as I did above.

3. If Alice wants to send 1 she sends Bob an equation that \((170, 39, 3, 1)\) DOES NOT solve. She can generate such an equation by doing what I did above and add 1.

 ▶ Would use a bigger mod and a longer equation in real life.

 ▶ This cipher only allows transmitting one bit.
Example of Using This Cipher

Private Key (170, 39, 3, 1). Both Alice and Bob have this.

Public Info 191, the mod. All math is mod 191.

Alice Wants to Send $b \in \{0, 1\}$.
Example of Using This Cipher

Private Key (170, 39, 3, 1). Both Alice and Bob have this.

Public Info 191, the mod. All math is mod 191.

Alice Wants to Send \(b \in \{0, 1\} \).

1. Alice picks random set of 4 elements: (40, 28, 111, 7).
Example of Using This Cipher

Private Key (170, 39, 3, 1). Both Alice and Bob have this.

Public Info 191, the mod. All math is mod 191.

Alice Wants to Send $b \in \{0, 1\}$.

1. Alice picks random set of 4 elements: (40, 28, 111, 7).
2. Alice computes $(40, 28, 111, 7) \cdot (170, 39, 3, 1) \equiv 19$.
Example of Using This Cipher

Private Key $(170, 39, 3, 1)$. Both Alice and Bob have this.
Public Info 191, the mod. All math is mod 191.

Alice Wants to Send $b \in \{0, 1\}$.

1. Alice picks random set of 4 elements: $(40, 28, 111, 7)$.
2. Alice computes $(40, 28, 111, 7) \cdot (170, 39, 3, 1) \equiv 19$.
3. To send b Alice sends $(40, 28, 111, 7; 19 + b)$.
Example of Using This Cipher

Private Key \((170, 39, 3, 1)\). Both Alice and Bob have this.

Public Info \(191\), the mod. All math is mod \(191\).

Alice Wants to Send \(b \in \{0, 1\}\).

1. Alice picks random set of 4 elements: \((40, 28, 111, 7)\).
2. Alice computes \((40, 28, 111, 7) \cdot (170, 39, 3, 1) \equiv 19\).
3. To send \(b\) Alice sends \((40, 28, 111, 7; 19 + b)\).
4. If Bob gets \((40, 28, 111, 7; 19)\) he will do
 \((40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19\), note \(19 \equiv 19\) and know \(b = 0\).
Example of Using This Cipher

Private Key \((170, 39, 3, 1)\). Both Alice and Bob have this.

Public Info 191, the mod. All math is mod 191.

Alice Wants to Send \(b \in \{0, 1\}\).

1. Alice picks random set of 4 elements: \((40, 28, 111, 7)\).
2. Alice computes \((40, 28, 111, 7) \cdot (170, 39, 3, 1) \equiv 19\).
3. To send \(b\) Alice sends \((40, 28, 111, 7; 19 + b)\).
4. If Bob gets \((40, 28, 111, 7; 19)\) he will do \((40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19\), note \(19 \equiv 19\) and know \(b = 0\).

If Bob gets \((40, 28, 111, 7; 20)\) he will do \((40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19\), note \(19 \not\equiv 20\) and know \(b = 1\).
Eve Can Crack This: Eve’s View

Private Key \((k_1, k_2, k_3, k_4)\). Both Alice and Bob have this.

Public Info 191, the mod. All math is mod 191. \(191^4\) poss for key.

Alice Wants to Send \(b \in \{0, 1\}\).
Eve Can Crack This: Eve’s View

Private Key \((k_1, k_2, k_3, k_4)\). Both Alice and Bob have this.

Public Info 191, the mod. All math is mod 191. \(191^4\) poss for key.

Alice Wants to Send \(b \in \{0, 1\}\).

1. Alice picks random set of 4 elements: \((40, 28, 111, 7)\).
Eve Can Crack This: Eve’s View

Private Key \((k_1, k_2, k_3, k_4)\). Both Alice and Bob have this.

Public Info 191, the mod. All math is mod 191. \(191^4\) poss for key.

Alice Wants to Send \(b \in \{0, 1\}\).

1. Alice picks random set of 4 elements: \((40, 28, 111, 7)\).
2. Alice computes \((40, 28, 111, 7) \cdot (k_1, k_2, k_3, k_4) \equiv C\) (Eve does not see \(C\))
Eve Can Crack This: Eve’s View

Private Key \((k_1, k_2, k_3, k_4)\). Both Alice and Bob have this.
Public Info 191, the mod. All math is mod 191. \(191^4\) poss for key.

Alice Wants to Send \(b \in \{0, 1\}\).

1. Alice picks random set of 4 elements: \((40, 28, 111, 7)\).
2. Alice computes \((40, 28, 111, 7) \cdot (k_1, k_2, k_3, k_4) \equiv C\) (Eve does not see \(C\))
3. To send \(b\) Alice sends \((40, 28, 111, 7; C + b)\). Eve sees \(C + b\).
Private Key \((k_1, k_2, k_3, k_4)\). Both Alice and Bob have this.

Public Info 191, the mod. All math is mod 191. \(191^4\) poss for key.

Alice Wants to Send \(b \in \{0, 1\}\).

1. Alice picks random set of 4 elements: \((40, 28, 111, 7)\).
2. Alice computes \((40, 28, 111, 7) \cdot (k_1, k_2, k_3, k_4) \equiv C\) (Eve does not see \(C\))
3. To send \(b\) Alice sends \((40, 28, 111, 7; C + b)\). Eve sees \(C + b\).

KPA attack Eve later finds out that \(b = 0\), so \(C \equiv 19\). Eve knows:
Eve Can Crack This: Eve’s View

Private Key \((k_1, k_2, k_3, k_4)\). Both Alice and Bob have this.

Public Info 191, the mod. All math is mod 191. 191^4 poss for key.

Alice Wants to Send \(b \in \{0, 1\}\).

1. Alice picks random set of 4 elements: \((40, 28, 111, 7)\).
2. Alice computes \((40, 28, 111, 7) \cdot (k_1, k_2, k_3, k_4) \equiv C\) (Eve does not see \(C\))
3. To send \(b\) Alice sends \((40, 28, 111, 7; C + b)\). Eve sees \(C + b\).

KPA attack Eve later finds out that \(b = 0\), so \(C \equiv 19\). Eve knows:

\[
40k_1 + 28k_2 + 111k_3 + 7k_4 \equiv 19
\]
Private Key \((k_1, k_2, k_3, k_4)\). Both Alice and Bob have this.

Public Info 191, the mod. All math is mod 191. 191^4 poss for key.

Alice Wants to Send \(b \in \{0, 1\}\).

1. Alice picks random set of 4 elements: \((40, 28, 111, 7)\).
2. Alice computes \((40, 28, 111, 7) \cdot (k_1, k_2, k_3, k_4) \equiv C\) (Eve does not see \(C\)).
3. To send \(b\) Alice sends \((40, 28, 111, 7; C + b)\). Eve sees \(C + b\).

KPA attack Eve later finds out that \(b = 0\), so \(C \equiv 19\). Eve knows:

\[
40k_1 + 28k_2 + 111k_3 + 7k_4 \equiv 19
\]

Number of possibilities for key \((k_1, k_2, k_3, k_4)\) is now 191^3. If sees more messages can cut down search space to one possibility.
Protocol made a sharp distinction between:

- Key is solution.
- Key is not solution.
How to Fix This? Recall the Protocol

Protocol made a sharp distinction between:

- Key is solution.
- Key is not solution.

That is too sharp. Instead we will do distinction between:

- Key is close to a solution.
- Key is far from a solution.
Notation We Will Need

\(e \in^\prime A \) means that \(e \) is picked uniformly at random from the set \(A \).
Notation We Will Need

e ∈ \mathbb{R}^A \text{ means that } e \text{ is picked uniformly at random from the set } A.

We will pick our error uniformly.
Notation We Will Need

\[e \in'_A \] means that \(e \) is picked uniformly at random from the set \(A \).

We will pick our error uniformly.

When LWE is really used they pick the error with a Gaussian around 0.
Notation We Will Need

\(e \in^r A \) means that \(e \) is picked unif at random from the set \(A \).

We will pick our error uniformly.

When LWE is really used they pick the error with a Gaussian around 0.

We are doing it in a way that is not used but better for education.
Example of Better Cipher

Private Key (170, 39, 3, 1). **Public Info** mod 191.

1. Alice picks random set of 4 elements: (40, 28, 111, 7).
2. Alice computes $(40, 28, 111, 7) \cdot (170, 39, 3, 1) \equiv 19$.
3. Bit b: A sends $(40, 28, 111, 7; 19 + e + 50b)$. $e \in \{-1, 0, 1\}$.
4. If Bob gets $(40, 28, 111, 7; 19 + e)$ he will do $(40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19 \sim 19 + e$, so bit is 0. If Bob gets $(40, 28, 111, 7; 19 + e + 50)$ he will do $(40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19 \not\sim 19 + e + 50$ so bit is 1.

$e \in \{-1, 0, 1\}$. Note that $-1 \equiv 190$. $e \in \{-1, 0, 1\}$. In real system $e \in \{-\gamma, \ldots, \gamma\}$, γ a param.

We picked 50 as our big number. In real system use $\sim p^4$.
Example of Better Cipher

Private Key (170, 39, 3, 1). **Public Info** mod 191.

1. Alice picks random set of 4 elements: (40, 28, 111, 7).
Example of Better Cipher

Private Key \((170, 39, 3, 1)\). Public Info mod 191.

1. Alice picks random set of 4 elements: \((40, 28, 111, 7)\).
2. Alice computes \((40, 28, 111, 7) \cdot (170, 39, 3, 1) \equiv 19\).
Example of Better Cipher

Private Key \((170, 39, 3, 1)\). Public Info \(\mod 191\).

1. Alice picks random set of 4 elements: \((40, 28, 111, 7)\).
2. Alice computes \((40, 28, 111, 7) \cdot (170, 39, 3, 1) \equiv 19\).
3. Bit \(b\): A sends \((40, 28, 111, 7; 19 + e + 50b)\).
 \(e \in \{−1, 0, 1\}\).
Example of Better Cipher

Private Key (170, 39, 3, 1). **Public Info** mod 191.

1. Alice picks random set of 4 elements: (40, 28, 111, 7).
2. Alice computes \((40, 28, 111, 7) \cdot (170, 39, 3, 1) \equiv 19\).
3. Bit \(b\): A sends \((40, 28, 111, 7; 19 + e + 50b)\).
 \[e \in \{−1, 0, 1\} .\]
4. If Bob gets \((40, 28, 111, 7; 19 + e)\) he will do
 \((40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19 \sim 19 + e\), so bit is 0.
Example of Better Cipher

Private Key \((170, 39, 3, 1)\). Public Info \(\mod 191\).

1. Alice picks random set of 4 elements: \((40, 28, 111, 7)\).
2. Alice computes \((40, 28, 111, 7) \cdot (170, 39, 3, 1) \equiv 19\).
3. Bit \(b\): A sends \((40, 28, 111, 7; 19 + e + 50b)\).

 \(e \in \{−1, 0, 1\}\).

4. If Bob gets \((40, 28, 111, 7; 19 + e)\) he will do

 \((40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19 \sim 19 + e\), so bit is 0.

If Bob gets \((40, 28, 111, 7; 19 + e + 50)\) he will do

\((40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19 \not\sim 19 + e + 50\) so bit is 1.
Example of Better Cipher

Private Key \((170, 39, 3, 1)\). Public Info mod 191.

1. Alice picks random set of 4 elements: \((40, 28, 111, 7)\).
2. Alice computes \((40, 28, 111, 7) \cdot (170, 39, 3, 1) \equiv 19\).
3. Bit \(b\): A sends \((40, 28, 111, 7; 19 + e + 50b)\).
 \(e \in \{-1, 0, 1\}\).

4. If Bob gets \((40, 28, 111, 7; 19 + e)\) he will do \((40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19 \sim 19 + e\), so bit is 0.
 If Bob gets \((40, 28, 111, 7; 19 + e + 50)\) he will do \((40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19 \not\sim 19 + e + 50\) so bit is 1.

\(\Rightarrow e \in \{-1, 0, 1\}\). Note that \(-1 \equiv 190\).
Example of Better Cipher

Private Key (170, 39, 3, 1). **Public Info** mod 191.

1. Alice picks random set of 4 elements: (40, 28, 111, 7).
2. Alice computes (40, 28, 111, 7) \cdot (170, 39, 3, 1) \equiv 19.
3. Bit \(b\): A sends (40, 28, 111, 7; 19 + e + 50b).
 \[e \in \{−1, 0, 1\}. \]
4. If Bob gets (40, 28, 111, 7; 19 + e) he will do
 (40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19 \sim 19 + e, so bit is 0.
 If Bob gets (40, 28, 111, 7; 19 + e + 50) he will do
 (40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19 \not\sim 19 + e + 50 so bit is 1.

\[e \in \{−1, 0, 1\}. \text{ Note that } −1 \equiv 190. \]

\[e \in \{−1, 0, 1\}. \text{ In real system } e \in \{−\gamma, \ldots, \gamma\}, \gamma \text{ a param.} \]
Example of Better Cipher

Private Key \((170, 39, 3, 1)\). Public Info \(\mod 191\).

1. Alice picks random set of 4 elements: \((40, 28, 111, 7)\).
2. Alice computes \((40, 28, 111, 7) \cdot (170, 39, 3, 1) \equiv 19\).
3. Bit \(b\): A sends \((40, 28, 111, 7; 19 + e + 50b)\).
 \(e \in \{-1, 0, 1\}\).
4. If Bob gets \((40, 28, 111, 7; 19 + e)\) he will do
 \((40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19 \sim 19 + e\), so bit is 0.
 If Bob gets \((40, 28, 111, 7; 19 + e + 50)\) he will do
 \((40, 20, 111, 7) \cdot (170, 39, 3, 1) \equiv 19 \not\sim 19 + e + 50\) so bit is 1.

\(\triangleright\) \(e \in \{-1, 0, 1\}\). Note that \(-1 \equiv 190\).

\(\triangleright\) \(e \in \{-1, 0, 1\}\). In real system \(e \in \{-\gamma, \ldots, \gamma\}\), \(\gamma\) a param.

\(\triangleright\) We picked 50 as our big number. In real system use \(\sim \frac{p}{4}\).
Floor Ceiling Convention; Vector Notation

When we write something like $\frac{p}{4}$ where p is odd we really mean

$$\left\lfloor \frac{p}{4} \right\rfloor$$
When we write something like $\frac{p}{4}$ where p is odd we really mean

$$\left\lfloor \frac{p}{4} \right\rfloor$$

In our concrete examples we had things like

The Key is (1, 2, 3, 40)
When we write something like $\frac{p}{4}$ where p is odd we really mean

$$\left\lfloor \frac{p}{4} \right\rfloor$$

In our concrete examples we had things like

The Key is (1, 2, 3, 40)

We will now use \vec{k} for the key of length n
When we write something like $\frac{p}{4}$ where p is odd we really mean $\left\lfloor \frac{p}{4} \right\rfloor$

In our concrete examples we had things like

The Key is $(1, 2, 3, 40)$

We will now use \vec{k} for the key of length n

We will now use \vec{r} for a random vector of length n.
Private Key LWE Cipher

Private Key \vec{k}. Both Alice and Bob have this.
Public Info p, γ. p is prime. All math is mod p.

Alice Wants to Send $b \in \{0, 1\}$.
1. Alice picks random vector \vec{r}.
2. Alice computes $\vec{r} \cdot \vec{k} \equiv C$ and $e \in \{-\gamma, \ldots, \gamma\}$.
3. To send b Alice sends $(\vec{r}; D)$ where $D \equiv C + e + bp$.
4. Bob computes $\vec{r} \cdot \vec{k} \equiv C$. If $D \sim C$ then $b = 0$. If $D \sim C + p$ then $b = 1$.

Is this a good cipher? Easy to use? Secure? Discuss.
Private Key \vec{k}. Both Alice and Bob have this.
Public Info p, γ. p is prime. All math is mod p.
Alice Wants to Send $b \in \{0, 1\}$.
Private Key LWE Cipher

Private Key \vec{k}. Both Alice and Bob have this.

Public Info p, γ. p is prime. All math is mod p.

Alice Wants to Send $b \in \{0, 1\}$.

1. Alice picks random vector \vec{r}.
Private Key LWE Cipher

Private Key \vec{k}. Both Alice and Bob have this.
Public Info p, γ. p is prime. All math is mod p.

Alice Wants to Send $b \in \{0, 1\}$.

1. Alice picks random vector \vec{r}.
2. Alice computes $\vec{r} \cdot \vec{k} \equiv C$ and $e \in \{ -\gamma, \ldots, \gamma \}$.

To send b, Alice sends $(\vec{r}; D)$ where $D \equiv C + e + bp$.

4. Bob computes $\vec{r} \cdot \vec{k} \equiv C$. If $D \sim C$ then $b = 0$. If $D \sim C + p$ then $b = 1$.

Is this a good cipher? Easy to use? Secure? Discuss.
Private Key LWE Cipher

Private Key \vec{k}. Both Alice and Bob have this.
Public Info p, γ. p is prime. All math is mod p.

Alice Wants to Send $b \in \{0, 1\}$.

1. Alice picks random vector \vec{r}.
2. Alice computes $\vec{r} \cdot \vec{k} \equiv C$ and $e \in \{ -\gamma, \ldots, \gamma \}$.
3. To send b Alice sends $(\vec{r}; D)$ where $D \equiv C + e + \frac{bp}{4}$.
Private Key LWE Cipher

Private Key \vec{k}. Both Alice and Bob have this.

Public Info p, γ. p is prime. All math is mod p.

Alice Wants to Send $b \in \{0, 1\}$.

1. Alice picks random vector \vec{r}.
2. Alice computes $\vec{r} \cdot \vec{k} \equiv C$ and $e \in \{ -\gamma, \ldots, \gamma \}$.
3. To send b Alice sends $(\vec{r}; D)$ where $D \equiv C + e + \frac{bp}{4}$.
4. Bob computes $\vec{r} \cdot \vec{k} \equiv C$. If $D \sim C$ then $b = 0$. If $D \sim C + \frac{p}{4}$ then $b = 1$.

Is this a good cipher? Easy to use? Secure? Discuss.
Private Key LWE Cipher

Private Key \vec{k}. Both Alice and Bob have this.

Public Info p, γ. p is prime. All math is mod p.

Alice Wants to Send $b \in \{0, 1\}$.

1. Alice picks random vector \vec{r}.
2. Alice computes $\vec{r} \cdot \vec{k} \equiv C$ and $e \in \{-\gamma, \ldots, \gamma\}$.
3. To send b Alice sends $(\vec{r}; D)$ where $D \equiv C + e + \frac{bp}{4}$.
4. Bob computes $\vec{r} \cdot \vec{k} \equiv C$. If $D \sim C$ then $b = 0$. If $D \sim C + \frac{p}{4}$ then $b = 1$.

Is this a good cipher? Easy to use? Secure? Discuss.
Private Key LWE Cipher: Pick γ so Works

If $b = 0$ then Bob compares C to $C + e$. Diff: $e \in \{-\gamma, ..., \gamma\}$.

If $b = 1$ then Bob compares C to $C + e + p/4$. Diff: $e + p/4 \in \{-\gamma + p/4, ..., \gamma + p/4\}$.

Need these intervals are disjoint. Two intervals mod p are disjoint iff when you shift them they are disjoint. We want to shift them to avoid wrap around. Shift both by γ. Need \{0, ..., 2γ\} and \{\frac{p}{4}, ..., 2γ + \frac{p}{4}\} disjoint. So need $2\gamma < \frac{p}{4}$ and $2\gamma + \frac{p}{4} < p$. $\gamma < \frac{p}{16}$ suffices. (Actually $\frac{p}{8}$ suffices, but we will use $\frac{p}{16}$.)

If $b = 0$: Bob sees that diff is in \{0, ..., p/16\} = \{0, ..., p/16\} \cup \{15p/16, ..., p - 1\}.

If $b = 1$: Bob sees that diff is in \{3p/16, ..., 5p/16\}.
Private Key LWE Cipher: Pick γ so Works

- If $b = 0$ then Bob compares C to $C + e$.
 \[\text{Diff: } e \in \{-\gamma, \ldots, \gamma\}. \]
Private Key LWE Cipher: Pick γ so Works

- If $b = 0$ then Bob compares C to $C + e$.
 Diff: $e \in \{-\gamma, \ldots, \gamma\}$.

- If $b = 1$ then Bob compares C to $C + e + \frac{p}{4}$.
 Diff: $e + \frac{p}{4} \in \{-\gamma + \frac{p}{4}, \ldots, \gamma + \frac{p}{4}\}$.
Private Key LWE Cipher: Pick γ so Works

- If $b = 0$ then Bob compares C to $C + e$.
 Diff: $e \in \{-\gamma, \ldots, \gamma\}$.
- If $b = 1$ then Bob compares C to $C + e + \frac{p}{4}$.
 Diff: $e + \frac{p}{4} \in \{-\gamma + \frac{p}{4}, \ldots, \gamma + \frac{p}{4}\}$.

Need these intervals are disjoint.
Private Key LWE Cipher: Pick γ so Works

- If $b = 0$ then Bob compares C to $C + e$.
 \[\text{Diff: } e \in \{-\gamma, \ldots, \gamma\}. \]

- If $b = 1$ then Bob compares C to $C + e + \frac{p}{4}$.
 \[\text{Diff: } e + \frac{p}{4} \in \{-\gamma + \frac{p}{4}, \ldots, \gamma + \frac{p}{4}\}. \]

Need these intervals are disjoint. Two intervals mod p are disjoint iff when you shift them they are disjoint. We want to shift them to avoid wrap around.
Private Key LWE Cipher: Pick γ so Works

- If $b = 0$ then Bob compares C to $C + e$.
 Diff: $e \in \{-\gamma, \ldots, \gamma\}$.

- If $b = 1$ then Bob compares C to $C + e + \frac{p}{4}$.
 Diff: $e + \frac{p}{4} \in \{-\gamma + \frac{p}{4}, \ldots, \gamma + \frac{p}{4}\}$.

Need these intervals are disjoint. Two intervals mod p are disjoint iff when you shift them they are disjoint. We want to shift them to avoid wrap around.
Shift both by γ. Need
$\{0, \ldots, 2\gamma\}$ and $\{\frac{p}{4}, \ldots, 2\gamma + \frac{p}{4}\}$ disjoint.
Private Key LWE Cipher: Pick γ so Works

- If $b = 0$ then Bob compares C to $C + e$.
 Diff: $e \in \{-\gamma, \ldots, \gamma\}$.

- If $b = 1$ then Bob compares C to $C + e + \frac{p}{4}$.
 Diff: $e + \frac{p}{4} \in \{-\gamma + \frac{p}{4}, \ldots, \gamma + \frac{p}{4}\}$.

Need these intervals are disjoint. Two intervals mod p are disjoint iff when you shift them they are disjoint. We want to shift them to avoid wrap around.
Shift both by γ. Need
$\{0, \ldots, 2\gamma\}$ and $\{\frac{p}{4}, \ldots, 2\gamma + \frac{p}{4}\}$ disjoint.
So need $2\gamma < \frac{p}{4}$ and $2\gamma + \frac{p}{4} < p$. $\gamma < \frac{p}{16}$ suffices. (Actually $\frac{p}{8}$ suffices, but we will use $\frac{p}{16}$.)
Private Key LWE Cipher: Pick γ so Works

- If $b = 0$ then Bob compares C to $C + e$.
 Diff: $e \in \{-\gamma, \ldots, \gamma\}$.

- If $b = 1$ then Bob compares C to $C + e + \frac{p}{4}$.
 Diff: $e + \frac{p}{4} \in \{-\gamma + \frac{p}{4}, \ldots, \gamma + \frac{p}{4}\}$.

Need these intervals are disjoint. Two intervals mod p are disjoint iff when you shift them they are disjoint. We want to shift them to avoid wrap around.

Shift both by γ. Need

{0, \ldots, 2\gamma} and {\frac{p}{4}, \ldots, 2\gamma + \frac{p}{4}} disjoint.

So need $2\gamma < \frac{p}{4}$ and $2\gamma + \frac{p}{4} < p$. $\gamma < \frac{p}{16}$ suffices. (Actually $\frac{p}{8}$ suffices, but we will use $\frac{p}{16}$.)

- $b = 0$: Bob sees that diff is in $\{-\frac{p}{16}, \ldots, \frac{p}{16}\}$
 $= \{0, \ldots, \frac{p}{16}\} \cup \{\frac{15p}{16}, \ldots, p - 1\}$.
Private Key LWE Cipher: Pick \(\gamma \) so Works

- If \(b = 0 \) then Bob compares \(C \) to \(C + e \).

 Diff: \(e \in \{-\gamma, \ldots, \gamma\} \).

- If \(b = 1 \) then Bob compares \(C \) to \(C + e + \frac{p}{4} \).

 Diff: \(e + \frac{p}{4} \in \{-\gamma + \frac{p}{4}, \ldots, \gamma + \frac{p}{4}\} \).

Need these intervals are disjoint. Two intervals mod \(p \) are disjoint iff when you shift them they are disjoint. We want to shift them to avoid wrap around.

Shift both by \(\gamma \). Need \(\{0, \ldots, 2\gamma\} \) and \(\left\{ \frac{p}{4}, \ldots, 2\gamma + \frac{p}{4} \right\} \) disjoint.

So need \(2\gamma < \frac{p}{4} \) and \(2\gamma + \frac{p}{4} < p \). \(\gamma < \frac{p}{16} \) suffices. (Actually \(\frac{p}{8} \) suffices, but we will use \(\frac{p}{16} \).)

- \(b = 0 \): Bob sees that diff is in \(\{-\frac{p}{16}, \ldots, \frac{p}{16}\} \)

 \(= \{0, \ldots, \frac{p}{16}\} \cup \left\{ \frac{15p}{16}, \ldots, p - 1 \right\} \).

- \(b = 1 \): Bob sees that diff is in \(\left\{ \frac{3p}{16}, \ldots, \frac{5p}{16} \right\} \).
Why did I use a Prime?

Recall the protocol:

- **Private Key** \vec{k}. Both Alice and Bob have this.
- **Public Info** p, γ, n. p is prime. All math is mod p.
- **Alice Wants to Send** $b \in \{0, 1\}$.

1. Alice picks random vector \vec{r}.
2. Alice computes $\vec{r} \cdot \vec{k} \equiv C$ and $e \in \{-\gamma, \ldots, \gamma\}$.
3. To send b, Alice sends $(\vec{r}; D)$ where $D \equiv C + e + bp$.
4. Bob computes $\vec{r} \cdot \vec{k} \equiv C$. If $D \sim C$ then $b = 0$. If $D \sim C + p$ then $b = 1$.

Why did I use that p is prime?
I didn't! The proof that it's secure uses that p is prime.
Why did I use a Prime?

Recall the protocol:

Private Key \vec{k}. Both Alice and Bob have this.

Public Info p, γ, n. p is prime. All math is mod p.

Alice Wants to Send $b \in \{0, 1\}$.

1. Alice picks random vector \vec{r}.
Why did I use a Prime?

Recall the protocol:
Private Key $\vec{\kappa}$. Both Alice and Bob have this.
Public Info p, γ, n. p is prime. All math is mod p.
Alice Wants to Send $b \in \{0, 1\}$.

1. Alice picks random vector \vec{r}.
2. Alice computes $\vec{r} \cdot \vec{\kappa} \equiv C$ and $e \in \vec{r} \{-\gamma, \ldots, \gamma\}$.

Why did I use that p is prime?
I didn't! The proof that it's secure uses that p is prime.
Why did I use a Prime?

Recall the protocol:

Private Key \vec{k}. Both Alice and Bob have this.

Public Info p, γ, n. p is prime. All math is mod p.

Alice Wants to Send $b \in \{0, 1\}$.

1. Alice picks random vector \vec{r}.
2. Alice computes $\vec{r} \cdot \vec{k} \equiv C$ and $e \in \{ -\gamma, \ldots, \gamma \}$.
3. To send b Alice sends $(\vec{r}; D)$ where $D \equiv C + e + \frac{bp}{4}$.

I didn't! The proof that its secure uses that p is prime.
Why did I use a Prime?

Recall the protocol:

Private Key \vec{k}. Both Alice and Bob have this.

Public Info p, γ, n. p is prime. All math is mod p.

Alice Wants to Send $b \in \{0, 1\}$.

1. Alice picks random vector \vec{r}.
2. Alice computes $\vec{r} \cdot \vec{k} \equiv C$ and $e \in r \{-\gamma, \ldots, \gamma\}$.
3. To send b Alice sends $(\vec{r}; D)$ where $D \equiv C + e + \frac{bp}{4}$.
4. Bob computes $\vec{r} \cdot \vec{k} \equiv C$. If $D \sim C$ then $b = 0$. If $D \sim C + \frac{p}{4}$ then $b = 1$.

Why did I use that p is prime?

I didn't! The proof that it's secure uses that p is prime.
Why did I use a Prime?

Recall the protocol:

Private Key \(\vec{k} \). Both Alice and Bob have this.

Public Info \(p, \gamma, n \). \(p \) is prime. All math is mod \(p \).

Alice Wants to Send \(b \in \{0, 1\} \).

1. Alice picks random vector \(\vec{r} \).
2. Alice computes \(\vec{r} \cdot \vec{k} \equiv C \) and \(e \in \{ -\gamma, \ldots, \gamma \} \).
3. To send \(b \) Alice sends \((\vec{r}; D) \) where \(D \equiv C + e + \frac{bp}{4} \).
4. Bob computes \(\vec{r} \cdot \vec{k} \equiv C \). If \(D \sim C \) then \(b = 0 \). If \(D \sim C + \frac{p}{4} \) then \(b = 1 \).

Why did I use that \(p \) is prime?
Why did I use a Prime?

Recall the protocol:

Private Key \vec{k}. Both Alice and Bob have this.

Public Info p, γ, n. p is prime. All math is mod p.

Alice Wants to Send $b \in \{0, 1\}$.

1. Alice picks random vector \vec{r}.
2. Alice computes $\vec{r} \cdot \vec{k} \equiv C$ and $e \in \{ -\gamma, \ldots, \gamma \}$.
3. To send b Alice sends ($\vec{r}; D$) where $D \equiv C + e + \frac{bp}{4}$.
4. Bob computes $\vec{r} \cdot \vec{k} \equiv C$. If $D \sim C$ then $b = 0$. If $D \sim C + \frac{p}{4}$ then $b = 1$.

Why did I use that p is prime?
I didn’t!
Why did I use a Prime?

Recall the protocol:

Private Key \vec{k}. Both Alice and Bob have this.

Public Info p, γ, n. p is prime. All math is mod p.

Alice Wants to Send $b \in \{0, 1\}$.

1. Alice picks random vector \vec{r}.
2. Alice computes $\vec{r} \cdot \vec{k} \equiv C$ and $e \in \{\gamma, \ldots, \gamma\}$.
3. To send b Alice sends $(\vec{r}; D)$ where $D \equiv C + e + \frac{bp}{4}$.
4. Bob computes $\vec{r} \cdot \vec{k} \equiv C$. If $D \sim C$ then $b = 0$. If $D \sim C + \frac{p}{4}$ then $b = 1$.

Why did I use that p is prime?
I didn’t!
The proof that its secure uses that p is prime.
What problem does Eve need to solve to find the key?
What problem does Eve need to solve to find the key?

Learning With Errors Problem (LWE) Eve is given p, γ and told there is a key \vec{k} that she wants to find.

Eve is given a set of tuples (\vec{r}, D) and told that $\vec{r} \cdot \vec{k} - D \equiv e \in \{ -\gamma, \ldots, \gamma \}$. (Eve is not told e, just that $e \in \{ -\gamma, \ldots, \gamma \}$.) From these noisy equations she wants to learn \vec{k}.

Hard? This is thought to be a hard problem. (We will go into why LWE is thought to be hard when we do LWE-public, which won't be for a while.)
Private Key LWE Cipher: Security

What problem does Eve need to solve to find the key?

Learning With Errors Problem (LWE) Eve is given p, γ and told there is a key \vec{k} that she wants to find.

Eve is given a set of tuples (\vec{r}, D) and told that

$$\vec{r} \cdot \vec{k} - D \equiv e \in \langle -\gamma, \ldots, \gamma \rangle.$$

(Eve is not told e, just that $e \in \langle -\gamma, \ldots, \gamma \rangle$.)
What problem does Eve need to solve to find the key?

Learning With Errors Problem (LWE) Eve is given p, γ and told there is a key \vec{k} that she wants to find.

Eve is given a set of tuples (\vec{r}, D) and told that

$$\vec{r} \cdot \vec{k} - D \equiv e \in \mathbb{Z}_p \{ -\gamma, \ldots, \gamma \}.$$

(Eve is not told e, just that $e \in \mathbb{Z}_p \{ -\gamma, \ldots, \gamma \}$.)

From these *noisy equations* she wants to learn \vec{k}.

Private Key LWE Cipher: Security
What problem does Eve need to solve to find the key? **Learning With Errors Problem (LWE)** Eve is given p, γ and told there is a key \vec{k} that she wants to find. Eve is given a set of tuples (\vec{r}, D) and told that

$$\vec{r} \cdot \vec{k} - D \equiv e \in \{ -\gamma, \ldots, \gamma \}.$$

(Eve is not told e, just that $e \in \{ -\gamma, \ldots, \gamma \}$.) From these **noisy equations** she wants to learn \vec{k}. **Hard?**
What problem does Eve need to solve to find the key?

Learning With Errors Problem (LWE) Eve is given p, γ and told there is a key \vec{k} that she wants to find.

Eve is given a set of tuples (\vec{r}, D) and told that

$$\vec{r} \cdot \vec{k} - D \equiv e \in \ell \{-\gamma, \ldots, \gamma\}.$$

(Eve is not told e, just that $e \in \ell \{-\gamma, \ldots, \gamma\}$.)

From these noisy equations she wants to learn \vec{k}.

Hard? This is thought to be a hard problem.
What problem does Eve need to solve to find the key?

Learning With Errors Problem (LWE) Eve is given p, γ and told there is a key \overrightarrow{k} that she wants to find.

Eve is given a set of tuples (\overrightarrow{r}, D) and told that

$$\overrightarrow{r} \cdot \overrightarrow{k} - D \equiv e \in \mathcal{R} \{-\gamma, \ldots, \gamma\}.$$

(Eve is not told e, just that $e \in \mathcal{R} \{-\gamma, \ldots, \gamma\}$.)

From these *noisy equations* she wants to learn \overrightarrow{k}.

Hard? This is thought to be a hard problem.

(We will go into *why* LWE is thought to be hard when we do LWE-public, which won’t be for a while.)
Theorem About Security

Informal Theorem If Eve can crack LWE-private cipher then Eve can solve the LWE-problem. Note that this is the direction you want.

Proof

We won't prove this, but we note that it requires some work.

1. Since LWE-problem is thought to be hard, the LWE-private cipher is thought to be hard-to-crack.
2. So why is this cipher not used? Discuss.

- Only one bit.
- Can be modified to transmit more bits.
- For private-key crypto, better schemes are known.
Theorem About Security

Informal Theorem If Eve can crack LWE-private cipher then Eve can solve the LWE-problem. Note that this is the direction you want.

Proof We won’t prove this, but we note that it requires some work.
Theorem About Security

Informal Theorem If Eve can crack LWE-private cipher then Eve can solve the LWE-problem. Note that this is the direction you want.

Proof We won’t prove this, but we note that it requires some work.

1. Since LWE-problem is thought to be hard, the LWE-private cipher is thought to be hard-to-crack.
Theorem About Security

Informal Theorem If Eve can crack LWE-private cipher then Eve can solve the LWE-problem. Note that this is the direction you want.

Proof We won’t prove this, but we note that it requires some work.

1. Since LWE-problem is thought to be hard, the LWE-private cipher is thought to be hard-to-crack.
2. So why is this cipher not used? Discuss.
Theorem About Security

Informal Theorem If Eve can crack LWE-private cipher then Eve can solve the LWE-problem. Note that this is the direction you want.

Proof We won’t prove this, but we note that it requires some work.

1. Since LWE-problem is thought to be hard, the LWE-private cipher is thought to be hard-to-crack.
2. So why is this cipher not used? Discuss. Only one bit.
Informal Theorem If Eve can crack LWE-private cipher then Eve can solve the LWE-problem. Note that this is the direction you want.

Proof We won’t prove this, but we note that it requires some work.

1. Since LWE-problem is thought to be hard, the LWE-private cipher is thought to be hard-to-crack.
2. So why is this cipher not used? Discuss. Only one bit. Can be modified to transmit more bits.
Informal Theorem If Eve can crack LWE-private cipher then Eve can solve the LWE-problem. Note that this is the direction you want.

Proof We won’t prove this, but we note that it requires some work.

1. Since LWE-problem is thought to be hard, the LWE-private cipher is thought to be hard-to-crack.

2. So why is this cipher not used? Discuss. Only one bit. Can be modified to transmit more bits. For private-key crypto, better schemes are known.
Theorem (informal) The worst-case of LWE is the same as the Avg-case.
Theorem About Security: Very Nice PRO

Theorem (informal) The worst-case of LWE is the same as the Avg-case.

Proof We won’t prove this, but we note that it requires some work.
Theorem (informal) The worst-case of LWE is the same as the Avg-case.

Proof We won’t prove this, but we note that it requires some work.

1. A problem that plagues complexity theory is that a problem can have a bad worst-case but a reasonable average-case.
Theorem (informal) The worst-case of LWE is the same as the Avg-case.

Proof We won’t prove this, but we note that it requires some work.

1. A problem that plagues complexity theory is that a problem can have a bad worst-case but a reasonable average-case.
2. For LWE this is NOT an issue.
Theorem (informal) The worst-case of LWE is the same as the Avg-case.

Proof We won’t prove this, but we note that it requires some work.

1. A problem that plagues complexity theory is that a problem can have a bad worst-case but a reasonable average-case.
2. For LWE this is NOT an issue.
3. Hence the assumption that LWE is hard for worst case already gives you hard for avg case.
BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!!