
BILL TAPE LECTURE



Diffie-Helman Key
Exchange



Summary of Where We Are

1. Finding primes p such that p − 1 = 2q, q a prime, EASY

2. Given such a p, finding generator g , EASY.

3. Given such a p, finding generator g ∈ {p3 , . . . ,
2p
3 } EASY.

4. Given p, g , a finding ga (mod p) EASY.

5. The following problem thought to be hard:
Input prime p, generator g ∈ {p3 , . . . ,

2p
3 }, and a.

Output The x such that g x ≡ a (mod p)



Summary of Where We Are

1. Finding primes p such that p − 1 = 2q, q a prime, EASY

2. Given such a p, finding generator g , EASY.

3. Given such a p, finding generator g ∈ {p3 , . . . ,
2p
3 } EASY.

4. Given p, g , a finding ga (mod p) EASY.

5. The following problem thought to be hard:
Input prime p, generator g ∈ {p3 , . . . ,

2p
3 }, and a.

Output The x such that g x ≡ a (mod p)



Summary of Where We Are

1. Finding primes p such that p − 1 = 2q, q a prime, EASY

2. Given such a p, finding generator g , EASY.

3. Given such a p, finding generator g ∈ {p3 , . . . ,
2p
3 } EASY.

4. Given p, g , a finding ga (mod p) EASY.

5. The following problem thought to be hard:
Input prime p, generator g ∈ {p3 , . . . ,

2p
3 }, and a.

Output The x such that g x ≡ a (mod p)



Summary of Where We Are

1. Finding primes p such that p − 1 = 2q, q a prime, EASY

2. Given such a p, finding generator g , EASY.

3. Given such a p, finding generator g ∈ {p3 , . . . ,
2p
3 } EASY.

4. Given p, g , a finding ga (mod p) EASY.

5. The following problem thought to be hard:
Input prime p, generator g ∈ {p3 , . . . ,

2p
3 }, and a.

Output The x such that g x ≡ a (mod p)



Summary of Where We Are

1. Finding primes p such that p − 1 = 2q, q a prime, EASY

2. Given such a p, finding generator g , EASY.

3. Given such a p, finding generator g ∈ {p3 , . . . ,
2p
3 } EASY.

4. Given p, g , a finding ga (mod p) EASY.

5. The following problem thought to be hard:
Input prime p, generator g ∈ {p3 , . . . ,

2p
3 }, and a.

Output The x such that g x ≡ a (mod p)



Summary of Where We Are

1. Finding primes p such that p − 1 = 2q, q a prime, EASY

2. Given such a p, finding generator g , EASY.

3. Given such a p, finding generator g ∈ {p3 , . . . ,
2p
3 } EASY.

4. Given p, g , a finding ga (mod p) EASY.

5. The following problem thought to be hard:
Input prime p, generator g ∈ {p3 , . . . ,

2p
3 }, and a.

Output The x such that g x ≡ a (mod p)



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.

Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
Question Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
Question Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
Question Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
Question Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
Question Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
Question Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
Question Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
Question Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
Question Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO Alice and Bob can execute the protocol easily.

Biggest PRO Alice and Bob never had to meet!
Question Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!

Question Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
Question Can Eve find out s?



What Do We Really Know about Diffie-Hellman?

If Eve can compute Discrete Log quickly then she can crack DH:

1. Eve sees ga, gb.

2. Eve computes Discrete Log to find a, b.

3. Eve computes gab (mod p).

Known If Eve can crack DH then Eve can compute Discrete Log.
Not Known If Eve can crack DH then Eve can compute.



What Do We Really Know about Diffie-Hellman?

If Eve can compute Discrete Log quickly then she can crack DH:

1. Eve sees ga, gb.

2. Eve computes Discrete Log to find a, b.

3. Eve computes gab (mod p).

Known If Eve can crack DH then Eve can compute Discrete Log.
Not Known If Eve can crack DH then Eve can compute.



What Do We Really Know about Diffie-Hellman?

If Eve can compute Discrete Log quickly then she can crack DH:

1. Eve sees ga, gb.

2. Eve computes Discrete Log to find a, b.

3. Eve computes gab (mod p).

Known If Eve can crack DH then Eve can compute Discrete Log.
Not Known If Eve can crack DH then Eve can compute.



What Do We Really Know about Diffie-Hellman?

If Eve can compute Discrete Log quickly then she can crack DH:

1. Eve sees ga, gb.

2. Eve computes Discrete Log to find a, b.

3. Eve computes gab (mod p).

Known If Eve can crack DH then Eve can compute Discrete Log.
Not Known If Eve can crack DH then Eve can compute.



What Do We Really Know about Diffie-Hellman?

If Eve can compute Discrete Log quickly then she can crack DH:

1. Eve sees ga, gb.

2. Eve computes Discrete Log to find a, b.

3. Eve computes gab (mod p).

Known If Eve can crack DH then Eve can compute Discrete Log.
Not Known If Eve can crack DH then Eve can compute.



Hardness Assumption

Definition Let DHF be the following function:
Inputs p, g , ga, gb (note that a, b are not the input)

Outputs gab.

Obvious Theorem If Alice can crack Diffie-Hellman quickly then
Alice can compute DHF quickly.

Hardness assumption DHF is hard to compute.
What is Believed

1. DHF is hard.

2. DHF is not equivalent to DL.



Hardness Assumption

Definition Let DHF be the following function:
Inputs p, g , ga, gb (note that a, b are not the input)

Outputs gab.

Obvious Theorem If Alice can crack Diffie-Hellman quickly then
Alice can compute DHF quickly.
Hardness assumption DHF is hard to compute.

What is Believed

1. DHF is hard.

2. DHF is not equivalent to DL.



Hardness Assumption

Definition Let DHF be the following function:
Inputs p, g , ga, gb (note that a, b are not the input)

Outputs gab.

Obvious Theorem If Alice can crack Diffie-Hellman quickly then
Alice can compute DHF quickly.
Hardness assumption DHF is hard to compute.
What is Believed

1. DHF is hard.

2. DHF is not equivalent to DL.



How Can Alice and Bob
Use DH Key Exchange?



DH is Not a crypto System

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga and broadcasts it.

4. Bob picks rand b. Bob computes gb and broadcasts it.

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

At the end Alice and Bob have s but s has no meaning!.
s is not going to be Bounded Queries in Recursion Theory.
s is going to be some random number in {1, . . . , p − 1}.



DH is Not a crypto System

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga and broadcasts it.

4. Bob picks rand b. Bob computes gb and broadcasts it.

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

At the end Alice and Bob have s but s has no meaning!.
s is not going to be Bounded Queries in Recursion Theory.
s is going to be some random number in {1, . . . , p − 1}.



DH is Not a crypto System

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga and broadcasts it.

4. Bob picks rand b. Bob computes gb and broadcasts it.

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

At the end Alice and Bob have s but s has no meaning!.
s is not going to be Bounded Queries in Recursion Theory.
s is going to be some random number in {1, . . . , p − 1}.



DH is Not a crypto System

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga and broadcasts it.

4. Bob picks rand b. Bob computes gb and broadcasts it.

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

At the end Alice and Bob have s but s has no meaning!.
s is not going to be Bounded Queries in Recursion Theory.
s is going to be some random number in {1, . . . , p − 1}.



DH is Not a crypto System

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga and broadcasts it.

4. Bob picks rand b. Bob computes gb and broadcasts it.

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

At the end Alice and Bob have s but s has no meaning!.
s is not going to be Bounded Queries in Recursion Theory.
s is going to be some random number in {1, . . . , p − 1}.



DH is Not a crypto System

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga and broadcasts it.

4. Bob picks rand b. Bob computes gb and broadcasts it.

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

At the end Alice and Bob have s but s has no meaning!.
s is not going to be Bounded Queries in Recursion Theory.
s is going to be some random number in {1, . . . , p − 1}.



DH is Not a crypto System

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga and broadcasts it.

4. Bob picks rand b. Bob computes gb and broadcasts it.

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

At the end Alice and Bob have s but s has no meaning!.
s is not going to be Bounded Queries in Recursion Theory.
s is going to be some random number in {1, . . . , p − 1}.



DH is Not a crypto System

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga and broadcasts it.

4. Bob picks rand b. Bob computes gb and broadcasts it.

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

At the end Alice and Bob have s

but s has no meaning!.
s is not going to be Bounded Queries in Recursion Theory.
s is going to be some random number in {1, . . . , p − 1}.



DH is Not a crypto System

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga and broadcasts it.

4. Bob picks rand b. Bob computes gb and broadcasts it.

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

At the end Alice and Bob have s but s has no meaning!.

s is not going to be Bounded Queries in Recursion Theory.
s is going to be some random number in {1, . . . , p − 1}.



DH is Not a crypto System

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga and broadcasts it.

4. Bob picks rand b. Bob computes gb and broadcasts it.

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

At the end Alice and Bob have s but s has no meaning!.
s is not going to be Bounded Queries in Recursion Theory.

s is going to be some random number in {1, . . . , p − 1}.



DH is Not a crypto System

1. Alice finds a (p, g), p of length L, g gen for Z∗
p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga and broadcasts it.

4. Bob picks rand b. Bob computes gb and broadcasts it.

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

At the end Alice and Bob have s but s has no meaning!.
s is not going to be Bounded Queries in Recursion Theory.
s is going to be some random number in {1, . . . , p − 1}.



How can Alice and Bob Use s?

s is random.

No meaning. Darn.

When life gives you lemons, make lemonade.

When life gives you a random string, use a one-time pad.

1. Alice and Bob do DH and have shared string s.

2. Alice uses s as the key for a 1-time pad to tell Bob the name
of the Book for Book Cipher.

This is not quite what people do but its the idea. Next slide is El
Gamal Public Key Crypto Systems which is what people do.



How can Alice and Bob Use s?

s is random. No meaning.

Darn.

When life gives you lemons, make lemonade.

When life gives you a random string, use a one-time pad.

1. Alice and Bob do DH and have shared string s.

2. Alice uses s as the key for a 1-time pad to tell Bob the name
of the Book for Book Cipher.

This is not quite what people do but its the idea. Next slide is El
Gamal Public Key Crypto Systems which is what people do.



How can Alice and Bob Use s?

s is random. No meaning. Darn.

When life gives you lemons, make lemonade.

When life gives you a random string, use a one-time pad.

1. Alice and Bob do DH and have shared string s.

2. Alice uses s as the key for a 1-time pad to tell Bob the name
of the Book for Book Cipher.

This is not quite what people do but its the idea. Next slide is El
Gamal Public Key Crypto Systems which is what people do.



How can Alice and Bob Use s?

s is random. No meaning. Darn.

When life gives you lemons, make lemonade.

When life gives you a random string, use a one-time pad.

1. Alice and Bob do DH and have shared string s.

2. Alice uses s as the key for a 1-time pad to tell Bob the name
of the Book for Book Cipher.

This is not quite what people do but its the idea. Next slide is El
Gamal Public Key Crypto Systems which is what people do.



How can Alice and Bob Use s?

s is random. No meaning. Darn.

When life gives you lemons, make lemonade.

When life gives you a random string, use a one-time pad.

1. Alice and Bob do DH and have shared string s.

2. Alice uses s as the key for a 1-time pad to tell Bob the name
of the Book for Book Cipher.

This is not quite what people do but its the idea. Next slide is El
Gamal Public Key Crypto Systems which is what people do.



How can Alice and Bob Use s?

s is random. No meaning. Darn.

When life gives you lemons, make lemonade.

When life gives you a random string, use a one-time pad.

1. Alice and Bob do DH and have shared string s.

2. Alice uses s as the key for a 1-time pad to tell Bob the name
of the Book for Book Cipher.

This is not quite what people do but its the idea. Next slide is El
Gamal Public Key Crypto Systems which is what people do.



How can Alice and Bob Use s?

s is random. No meaning. Darn.

When life gives you lemons, make lemonade.

When life gives you a random string, use a one-time pad.

1. Alice and Bob do DH and have shared string s.

2. Alice uses s as the key for a 1-time pad to tell Bob the name
of the Book for Book Cipher.

This is not quite what people do but its the idea. Next slide is El
Gamal Public Key Crypto Systems which is what people do.



How can Alice and Bob Use s?

s is random. No meaning. Darn.

When life gives you lemons, make lemonade.

When life gives you a random string, use a one-time pad.

1. Alice and Bob do DH and have shared string s.

2. Alice uses s as the key for a 1-time pad to tell Bob the name
of the Book for Book Cipher.

This is not quite what people do but its the idea. Next slide is El
Gamal Public Key Crypto Systems which is what people do.



Note really 1-Time Pad

Usual 1-Time Pad messages are bit strings. Use ⊕.

In Next Protocol messages are elements of Z∗
p. Use Mult Mod p.



Note really 1-Time Pad

Usual 1-Time Pad messages are bit strings. Use ⊕.
In Next Protocol messages are elements of Z∗

p. Use Mult Mod p.



ElGamal is DH Made Into an Enc System

1. Alice and Bob do Diffie Hellman.

2. Alice and Bob share secret s = gab (mod p).

3. Alice and Bob compute s−1 (mod p).

4. To send m, Alice sends c = ms (mod p).

5. To decrypt, Bob computes cs−1 ≡ mss−1 ≡ m (mod p).

We omit discussion of Hardness assumption (HW)



ElGamal is DH Made Into an Enc System

1. Alice and Bob do Diffie Hellman.

2. Alice and Bob share secret s = gab (mod p).

3. Alice and Bob compute s−1 (mod p).

4. To send m, Alice sends c = ms (mod p).

5. To decrypt, Bob computes cs−1 ≡ mss−1 ≡ m (mod p).

We omit discussion of Hardness assumption (HW)



ElGamal is DH Made Into an Enc System

1. Alice and Bob do Diffie Hellman.

2. Alice and Bob share secret s = gab (mod p).

3. Alice and Bob compute s−1 (mod p).

4. To send m, Alice sends c = ms (mod p).

5. To decrypt, Bob computes cs−1 ≡ mss−1 ≡ m (mod p).

We omit discussion of Hardness assumption (HW)



ElGamal is DH Made Into an Enc System

1. Alice and Bob do Diffie Hellman.

2. Alice and Bob share secret s = gab (mod p).

3. Alice and Bob compute s−1 (mod p).

4. To send m, Alice sends c = ms (mod p).

5. To decrypt, Bob computes cs−1 ≡ mss−1 ≡ m (mod p).

We omit discussion of Hardness assumption (HW)



ElGamal is DH Made Into an Enc System

1. Alice and Bob do Diffie Hellman.

2. Alice and Bob share secret s = gab (mod p).

3. Alice and Bob compute s−1 (mod p).

4. To send m, Alice sends c = ms (mod p).

5. To decrypt, Bob computes cs−1 ≡ mss−1 ≡ m (mod p).

We omit discussion of Hardness assumption (HW)



ElGamal is DH Made Into an Enc System

1. Alice and Bob do Diffie Hellman.

2. Alice and Bob share secret s = gab (mod p).

3. Alice and Bob compute s−1 (mod p).

4. To send m, Alice sends c = ms (mod p).

5. To decrypt, Bob computes cs−1 ≡ mss−1 ≡ m (mod p).

We omit discussion of Hardness assumption (HW)



Public Key
Cryptography: RSA



Recall that DH is not a crypto-system

Diffie Hellman allowed Alice and Bob to share a secret string.

Diffie Hellman is not an encryption system.

El Gamal is an encryption system but hard to use since its a
1-shot. You need to keep on doing DH to use it.

RSA is an encryption system.



Recall that DH is not a crypto-system

Diffie Hellman allowed Alice and Bob to share a secret string.

Diffie Hellman is not an encryption system.

El Gamal is an encryption system but hard to use since its a
1-shot. You need to keep on doing DH to use it.

RSA is an encryption system.



Recall that DH is not a crypto-system

Diffie Hellman allowed Alice and Bob to share a secret string.

Diffie Hellman is not an encryption system.

El Gamal is an encryption system but hard to use since its a
1-shot. You need to keep on doing DH to use it.

RSA is an encryption system.



Recall that DH is not a crypto-system

Diffie Hellman allowed Alice and Bob to share a secret string.

Diffie Hellman is not an encryption system.

El Gamal is an encryption system but hard to use since its a
1-shot. You need to keep on doing DH to use it.

RSA is an encryption system.



Theorem for Primes, Theorem for n

We restate and generalize.

Fermat’s Little Theorem If p is prime and a 6≡ 0 (mod p) then

am ≡ am mod p−1 (mod p).

Restate:
Fermat’s Little Theorem If p is prime and a is rel prime to p then

am ≡ am mod φ(p) (mod p).

Generalize:
Fermat-Euler Theorem If n ∈ N and a is rel prime to n then

am ≡ am mod φ(n) (mod n).



Theorem for Primes, Theorem for n

We restate and generalize.
Fermat’s Little Theorem If p is prime and a 6≡ 0 (mod p) then

am ≡ am mod p−1 (mod p).

Restate:
Fermat’s Little Theorem If p is prime and a is rel prime to p then

am ≡ am mod φ(p) (mod p).

Generalize:
Fermat-Euler Theorem If n ∈ N and a is rel prime to n then

am ≡ am mod φ(n) (mod n).



Theorem for Primes, Theorem for n

We restate and generalize.
Fermat’s Little Theorem If p is prime and a 6≡ 0 (mod p) then

am ≡ am mod p−1 (mod p).

Restate:
Fermat’s Little Theorem If p is prime and a is rel prime to p then

am ≡ am mod φ(p) (mod p).

Generalize:
Fermat-Euler Theorem If n ∈ N and a is rel prime to n then

am ≡ am mod φ(n) (mod n).



Theorem for Primes, Theorem for n

We restate and generalize.
Fermat’s Little Theorem If p is prime and a 6≡ 0 (mod p) then

am ≡ am mod p−1 (mod p).

Restate:
Fermat’s Little Theorem If p is prime and a is rel prime to p then

am ≡ am mod φ(p) (mod p).

Generalize:
Fermat-Euler Theorem If n ∈ N and a is rel prime to n then

am ≡ am mod φ(n) (mod n).



Examples

14999,999 (mod 393)

φ(393) = φ(3× 131) = φ(3)× φ(131) = 2× 130 = 260.

14999,999 = 14999,999 (mod 260) (mod 393) ≡ 1439 (mod 393)

Now just do repeated squaring.



Examples

14999,999 (mod 393)

φ(393) = φ(3× 131) = φ(3)× φ(131) = 2× 130 = 260.

14999,999 = 14999,999 (mod 260) (mod 393) ≡ 1439 (mod 393)

Now just do repeated squaring.



Examples

14999,999 (mod 393)

φ(393) = φ(3× 131) = φ(3)× φ(131) = 2× 130 = 260.

14999,999 = 14999,999 (mod 260) (mod 393) ≡ 1439 (mod 393)

Now just do repeated squaring.



Examples

14999,999 (mod 393)

φ(393) = φ(3× 131) = φ(3)× φ(131) = 2× 130 = 260.

14999,999 = 14999,999 (mod 260) (mod 393) ≡ 1439 (mod 393)

Now just do repeated squaring.



Easy and Hard

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

2. Given p, q find N = pq and R = φ(N) = (p−1)(q−1). Easy.

3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that ed ≡ 1 (mod R). Easy.

5. Given N, e find d such that ed ≡ 1 (mod R). Hard.

6. Compute me (mod N). Easy.



Easy and Hard

Easy or Hard?

1. Given L, generate two primes of length L: p, q.

Easy.

2. Given p, q find N = pq and R = φ(N) = (p−1)(q−1). Easy.

3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that ed ≡ 1 (mod R). Easy.

5. Given N, e find d such that ed ≡ 1 (mod R). Hard.

6. Compute me (mod N). Easy.



Easy and Hard

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

2. Given p, q find N = pq and R = φ(N) = (p−1)(q−1). Easy.

3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that ed ≡ 1 (mod R). Easy.

5. Given N, e find d such that ed ≡ 1 (mod R). Hard.

6. Compute me (mod N). Easy.



Easy and Hard

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

2. Given p, q find N = pq and R = φ(N) = (p−1)(q−1).

Easy.

3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that ed ≡ 1 (mod R). Easy.

5. Given N, e find d such that ed ≡ 1 (mod R). Hard.

6. Compute me (mod N). Easy.



Easy and Hard

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

2. Given p, q find N = pq and R = φ(N) = (p−1)(q−1). Easy.

3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that ed ≡ 1 (mod R). Easy.

5. Given N, e find d such that ed ≡ 1 (mod R). Hard.

6. Compute me (mod N). Easy.



Easy and Hard

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

2. Given p, q find N = pq and R = φ(N) = (p−1)(q−1). Easy.

3. Given R find an e rel prime to R. (e for encrypt.)

Easy.

4. Given R, e find d such that ed ≡ 1 (mod R). Easy.

5. Given N, e find d such that ed ≡ 1 (mod R). Hard.

6. Compute me (mod N). Easy.



Easy and Hard

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

2. Given p, q find N = pq and R = φ(N) = (p−1)(q−1). Easy.

3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that ed ≡ 1 (mod R). Easy.

5. Given N, e find d such that ed ≡ 1 (mod R). Hard.

6. Compute me (mod N). Easy.



Easy and Hard

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

2. Given p, q find N = pq and R = φ(N) = (p−1)(q−1). Easy.

3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that ed ≡ 1 (mod R).

Easy.

5. Given N, e find d such that ed ≡ 1 (mod R). Hard.

6. Compute me (mod N). Easy.



Easy and Hard

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

2. Given p, q find N = pq and R = φ(N) = (p−1)(q−1). Easy.

3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that ed ≡ 1 (mod R). Easy.

5. Given N, e find d such that ed ≡ 1 (mod R). Hard.

6. Compute me (mod N). Easy.



Easy and Hard

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

2. Given p, q find N = pq and R = φ(N) = (p−1)(q−1). Easy.

3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that ed ≡ 1 (mod R). Easy.

5. Given N, e find d such that ed ≡ 1 (mod R).

Hard.

6. Compute me (mod N). Easy.



Easy and Hard

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

2. Given p, q find N = pq and R = φ(N) = (p−1)(q−1). Easy.

3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that ed ≡ 1 (mod R). Easy.

5. Given N, e find d such that ed ≡ 1 (mod R). Hard.

6. Compute me (mod N). Easy.



Easy and Hard

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

2. Given p, q find N = pq and R = φ(N) = (p−1)(q−1). Easy.

3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that ed ≡ 1 (mod R). Easy.

5. Given N, e find d such that ed ≡ 1 (mod R). Hard.

6. Compute me (mod N).

Easy.



Easy and Hard

Easy or Hard?

1. Given L, generate two primes of length L: p, q. Easy.

2. Given p, q find N = pq and R = φ(N) = (p−1)(q−1). Easy.

3. Given R find an e rel prime to R. (e for encrypt.) Easy.

4. Given R, e find d such that ed ≡ 1 (mod R). Easy.

5. Given N, e find d such that ed ≡ 1 (mod R). Hard.

6. Compute me (mod N). Easy.



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

4. Alice finds d such that ed ≡ 1 (mod R).

5. Alice broadcasts (N, e). (Bob and Eve both see it.)

6. Bob To send m ∈ {1, . . . ,N − 1}, broadcast me (mod N).

7. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med mod R ≡ m1 mod R ≡ m (mod N).

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
PRO Bob can control the message.
Question Can Eve find out m?



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

4. Alice finds d such that ed ≡ 1 (mod R).

5. Alice broadcasts (N, e). (Bob and Eve both see it.)

6. Bob To send m ∈ {1, . . . ,N − 1}, broadcast me (mod N).

7. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med mod R ≡ m1 mod R ≡ m (mod N).

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
PRO Bob can control the message.
Question Can Eve find out m?



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

4. Alice finds d such that ed ≡ 1 (mod R).

5. Alice broadcasts (N, e). (Bob and Eve both see it.)

6. Bob To send m ∈ {1, . . . ,N − 1}, broadcast me (mod N).

7. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med mod R ≡ m1 mod R ≡ m (mod N).

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
PRO Bob can control the message.
Question Can Eve find out m?



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

4. Alice finds d such that ed ≡ 1 (mod R).

5. Alice broadcasts (N, e). (Bob and Eve both see it.)

6. Bob To send m ∈ {1, . . . ,N − 1}, broadcast me (mod N).

7. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med mod R ≡ m1 mod R ≡ m (mod N).

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
PRO Bob can control the message.
Question Can Eve find out m?



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

4. Alice finds d such that ed ≡ 1 (mod R).

5. Alice broadcasts (N, e). (Bob and Eve both see it.)

6. Bob To send m ∈ {1, . . . ,N − 1}, broadcast me (mod N).

7. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med mod R ≡ m1 mod R ≡ m (mod N).

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
PRO Bob can control the message.
Question Can Eve find out m?



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

4. Alice finds d such that ed ≡ 1 (mod R).

5. Alice broadcasts (N, e). (Bob and Eve both see it.)

6. Bob To send m ∈ {1, . . . ,N − 1}, broadcast me (mod N).

7. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med mod R ≡ m1 mod R ≡ m (mod N).

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
PRO Bob can control the message.
Question Can Eve find out m?



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

4. Alice finds d such that ed ≡ 1 (mod R).

5. Alice broadcasts (N, e). (Bob and Eve both see it.)

6. Bob To send m ∈ {1, . . . ,N − 1}, broadcast me (mod N).

7. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med mod R ≡ m1 mod R ≡ m (mod N).

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
PRO Bob can control the message.
Question Can Eve find out m?



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

4. Alice finds d such that ed ≡ 1 (mod R).

5. Alice broadcasts (N, e). (Bob and Eve both see it.)

6. Bob To send m ∈ {1, . . . ,N − 1}, broadcast me (mod N).

7. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med mod R ≡ m1 mod R ≡ m (mod N).

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
PRO Bob can control the message.
Question Can Eve find out m?



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

4. Alice finds d such that ed ≡ 1 (mod R).

5. Alice broadcasts (N, e). (Bob and Eve both see it.)

6. Bob To send m ∈ {1, . . . ,N − 1}, broadcast me (mod N).

7. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med mod R ≡ m1 mod R ≡ m (mod N).

PRO Alice and Bob can execute the protocol easily.

Biggest PRO Alice and Bob never had to meet!
PRO Bob can control the message.
Question Can Eve find out m?



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

4. Alice finds d such that ed ≡ 1 (mod R).

5. Alice broadcasts (N, e). (Bob and Eve both see it.)

6. Bob To send m ∈ {1, . . . ,N − 1}, broadcast me (mod N).

7. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med mod R ≡ m1 mod R ≡ m (mod N).

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!

PRO Bob can control the message.
Question Can Eve find out m?



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

4. Alice finds d such that ed ≡ 1 (mod R).

5. Alice broadcasts (N, e). (Bob and Eve both see it.)

6. Bob To send m ∈ {1, . . . ,N − 1}, broadcast me (mod N).

7. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med mod R ≡ m1 mod R ≡ m (mod N).

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
PRO Bob can control the message.

Question Can Eve find out m?



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes R = φ(N) = φ(pq) = (p − 1)(q − 1).

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

4. Alice finds d such that ed ≡ 1 (mod R).

5. Alice broadcasts (N, e). (Bob and Eve both see it.)

6. Bob To send m ∈ {1, . . . ,N − 1}, broadcast me (mod N).

7. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med mod R ≡ m1 mod R ≡ m (mod N).

PRO Alice and Bob can execute the protocol easily.
Biggest PRO Alice and Bob never had to meet!
PRO Bob can control the message.
Question Can Eve find out m?



Convention for RSA

Alice sends (N, e) to get the process started.

Then Bob can send Alice messages.

We don’t have Alice sending Bob messages.

In examples we do in slides and HW we might not have
e ∈ {R3 , . . . ,

2R
3 } since we want to have easy computations for

educational purposes.



Convention for RSA

Alice sends (N, e) to get the process started.

Then Bob can send Alice messages.

We don’t have Alice sending Bob messages.

In examples we do in slides and HW we might not have
e ∈ {R3 , . . . ,

2R
3 } since we want to have easy computations for

educational purposes.



Convention for RSA

Alice sends (N, e) to get the process started.

Then Bob can send Alice messages.

We don’t have Alice sending Bob messages.

In examples we do in slides and HW we might not have
e ∈ {R3 , . . . ,

2R
3 } since we want to have easy computations for

educational purposes.



Convention for RSA

Alice sends (N, e) to get the process started.

Then Bob can send Alice messages.

We don’t have Alice sending Bob messages.

In examples we do in slides and HW we might not have
e ∈ {R3 , . . . ,

2R
3 } since we want to have easy computations for

educational purposes.



What Do We Really Know about RSA

If Eve can factor then she can crack RSA.

1. Input (N, e) where N = pq and e is rel prime to
R = (p − 1)(q − 1). (p, q,R are NOT part of the input.)

2. Eve factors N to find p, q. Eve computes R = (p − 1)(q − 1).

3. Eve finds d such that ed ≡ 1 (mod R).

Open If RSA is crackable then Factoring is Easy.



What Do We Really Know about RSA

If Eve can factor then she can crack RSA.

1. Input (N, e) where N = pq and e is rel prime to
R = (p − 1)(q − 1). (p, q,R are NOT part of the input.)

2. Eve factors N to find p, q. Eve computes R = (p − 1)(q − 1).

3. Eve finds d such that ed ≡ 1 (mod R).

Open If RSA is crackable then Factoring is Easy.



What Do We Really Know about RSA

If Eve can factor then she can crack RSA.

1. Input (N, e) where N = pq and e is rel prime to
R = (p − 1)(q − 1). (p, q,R are NOT part of the input.)

2. Eve factors N to find p, q. Eve computes R = (p − 1)(q − 1).

3. Eve finds d such that ed ≡ 1 (mod R).

Open If RSA is crackable then Factoring is Easy.



What Do We Really Know about RSA

If Eve can factor then she can crack RSA.

1. Input (N, e) where N = pq and e is rel prime to
R = (p − 1)(q − 1). (p, q,R are NOT part of the input.)

2. Eve factors N to find p, q. Eve computes R = (p − 1)(q − 1).

3. Eve finds d such that ed ≡ 1 (mod R).

Open If RSA is crackable then Factoring is Easy.



Hardness Assumption

Definition Let RSAF be the following function:
Input N, e,me (mod N) (know N = pq but don’t know p, q).

Outputs m.

Hardness assumption (HA) RSAF is hard to compute.

One can show, assuming HA that RSA is hard to crack.
Believed RSA is uncrackable but not equiv to factoring.



Hardness Assumption

Definition Let RSAF be the following function:
Input N, e,me (mod N) (know N = pq but don’t know p, q).

Outputs m.

Hardness assumption (HA) RSAF is hard to compute.

One can show, assuming HA that RSA is hard to crack.
Believed RSA is uncrackable but not equiv to factoring.



Hardness Assumption

Definition Let RSAF be the following function:
Input N, e,me (mod N) (know N = pq but don’t know p, q).

Outputs m.

Hardness assumption (HA) RSAF is hard to compute.

One can show, assuming HA that RSA is hard to crack.
Believed RSA is uncrackable but not equiv to factoring.



Making RSA More
Efficient



Use e = 224

+ 1. But . . .

In Practice: Want to use e = 22
4

+ 1 since:

1. Only 15 mults. (22
4

+ 1 has very few 1’s in it.)

2. 22
4

+ 1 Big enough to ward off the low-e attacks (we will
study those later).

3. 22
4

+ 1 is prime, so only way it fails to be rel prime to
R = (p − 1)(q − 1). is if it divides R. Unlikely and easily
tested.

In Theory: Do not want to use the same e over and over again
for fear of this being exploited.

Who is Right: e = 216 + 1 is used a lot. Should it be?

I Nobody in academia has cracked RSA just using that
e = 22

4 − 1.

I Nobody in the real world has cracked RSA just using that
e = 22

4 − 1.

I Do we really know that?



Use e = 224

+ 1. But . . .
In Practice: Want to use e = 22

4
+ 1 since:

1. Only 15 mults. (22
4

+ 1 has very few 1’s in it.)

2. 22
4

+ 1 Big enough to ward off the low-e attacks (we will
study those later).

3. 22
4

+ 1 is prime, so only way it fails to be rel prime to
R = (p − 1)(q − 1). is if it divides R. Unlikely and easily
tested.

In Theory: Do not want to use the same e over and over again
for fear of this being exploited.

Who is Right: e = 216 + 1 is used a lot. Should it be?

I Nobody in academia has cracked RSA just using that
e = 22

4 − 1.

I Nobody in the real world has cracked RSA just using that
e = 22

4 − 1.

I Do we really know that?



Use e = 224

+ 1. But . . .
In Practice: Want to use e = 22

4
+ 1 since:

1. Only 15 mults. (22
4

+ 1 has very few 1’s in it.)

2. 22
4

+ 1 Big enough to ward off the low-e attacks (we will
study those later).

3. 22
4

+ 1 is prime, so only way it fails to be rel prime to
R = (p − 1)(q − 1). is if it divides R. Unlikely and easily
tested.

In Theory: Do not want to use the same e over and over again
for fear of this being exploited.

Who is Right: e = 216 + 1 is used a lot. Should it be?

I Nobody in academia has cracked RSA just using that
e = 22

4 − 1.

I Nobody in the real world has cracked RSA just using that
e = 22

4 − 1.

I Do we really know that?



Use e = 224

+ 1. But . . .
In Practice: Want to use e = 22

4
+ 1 since:

1. Only 15 mults. (22
4

+ 1 has very few 1’s in it.)

2. 22
4

+ 1 Big enough to ward off the low-e attacks (we will
study those later).

3. 22
4

+ 1 is prime, so only way it fails to be rel prime to
R = (p − 1)(q − 1). is if it divides R. Unlikely and easily
tested.

In Theory: Do not want to use the same e over and over again
for fear of this being exploited.

Who is Right: e = 216 + 1 is used a lot. Should it be?

I Nobody in academia has cracked RSA just using that
e = 22

4 − 1.

I Nobody in the real world has cracked RSA just using that
e = 22

4 − 1.

I Do we really know that?



Use e = 224

+ 1. But . . .
In Practice: Want to use e = 22

4
+ 1 since:

1. Only 15 mults. (22
4

+ 1 has very few 1’s in it.)

2. 22
4

+ 1 Big enough to ward off the low-e attacks (we will
study those later).

3. 22
4

+ 1 is prime, so only way it fails to be rel prime to
R = (p − 1)(q − 1). is if it divides R. Unlikely and easily
tested.

In Theory: Do not want to use the same e over and over again
for fear of this being exploited.

Who is Right: e = 216 + 1 is used a lot. Should it be?

I Nobody in academia has cracked RSA just using that
e = 22

4 − 1.

I Nobody in the real world has cracked RSA just using that
e = 22

4 − 1.

I Do we really know that?



Use e = 224

+ 1. But . . .
In Practice: Want to use e = 22

4
+ 1 since:

1. Only 15 mults. (22
4

+ 1 has very few 1’s in it.)

2. 22
4

+ 1 Big enough to ward off the low-e attacks (we will
study those later).

3. 22
4

+ 1 is prime, so only way it fails to be rel prime to
R = (p − 1)(q − 1). is if it divides R. Unlikely and easily
tested.

In Theory: Do not want to use the same e over and over again
for fear of this being exploited.

Who is Right: e = 216 + 1 is used a lot.

Should it be?

I Nobody in academia has cracked RSA just using that
e = 22

4 − 1.

I Nobody in the real world has cracked RSA just using that
e = 22

4 − 1.

I Do we really know that?



Use e = 224

+ 1. But . . .
In Practice: Want to use e = 22

4
+ 1 since:

1. Only 15 mults. (22
4

+ 1 has very few 1’s in it.)

2. 22
4

+ 1 Big enough to ward off the low-e attacks (we will
study those later).

3. 22
4

+ 1 is prime, so only way it fails to be rel prime to
R = (p − 1)(q − 1). is if it divides R. Unlikely and easily
tested.

In Theory: Do not want to use the same e over and over again
for fear of this being exploited.

Who is Right: e = 216 + 1 is used a lot. Should it be?

I Nobody in academia has cracked RSA just using that
e = 22

4 − 1.

I Nobody in the real world has cracked RSA just using that
e = 22

4 − 1.

I Do we really know that?



Use e = 224

+ 1. But . . .
In Practice: Want to use e = 22

4
+ 1 since:

1. Only 15 mults. (22
4

+ 1 has very few 1’s in it.)

2. 22
4

+ 1 Big enough to ward off the low-e attacks (we will
study those later).

3. 22
4

+ 1 is prime, so only way it fails to be rel prime to
R = (p − 1)(q − 1). is if it divides R. Unlikely and easily
tested.

In Theory: Do not want to use the same e over and over again
for fear of this being exploited.

Who is Right: e = 216 + 1 is used a lot. Should it be?

I Nobody in academia has cracked RSA just using that
e = 22

4 − 1.

I Nobody in the real world has cracked RSA just using that
e = 22

4 − 1.

I Do we really know that?



Use e = 224

+ 1. But . . .
In Practice: Want to use e = 22

4
+ 1 since:

1. Only 15 mults. (22
4

+ 1 has very few 1’s in it.)

2. 22
4

+ 1 Big enough to ward off the low-e attacks (we will
study those later).

3. 22
4

+ 1 is prime, so only way it fails to be rel prime to
R = (p − 1)(q − 1). is if it divides R. Unlikely and easily
tested.

In Theory: Do not want to use the same e over and over again
for fear of this being exploited.

Who is Right: e = 216 + 1 is used a lot. Should it be?

I Nobody in academia has cracked RSA just using that
e = 22

4 − 1.

I Nobody in the real world has cracked RSA just using that
e = 22

4 − 1.

I Do we really know that?



Use e = 224

+ 1. But . . .
In Practice: Want to use e = 22

4
+ 1 since:

1. Only 15 mults. (22
4

+ 1 has very few 1’s in it.)

2. 22
4

+ 1 Big enough to ward off the low-e attacks (we will
study those later).

3. 22
4

+ 1 is prime, so only way it fails to be rel prime to
R = (p − 1)(q − 1). is if it divides R. Unlikely and easily
tested.

In Theory: Do not want to use the same e over and over again
for fear of this being exploited.

Who is Right: e = 216 + 1 is used a lot. Should it be?

I Nobody in academia has cracked RSA just using that
e = 22

4 − 1.

I Nobody in the real world has cracked RSA just using that
e = 22

4 − 1.

I Do we really know that?



RSA has NY,NY
Problem. Will Fix



Plain RSA Bytes!

Scenario
Eve sees Bob send Alice c1 (message is m1).

Later Eve sees Bob send Alice c2 (message is m2).

What can Eve easily deduce?

Eve can know if c1 = c2 or not. So what?
Eve knows if m1 = m2 or not. Its the NY,NY problem!

That alone makes it insecure.
Plain RSA is never used and should never be used!



Plain RSA Bytes!

Scenario
Eve sees Bob send Alice c1 (message is m1).
Later Eve sees Bob send Alice c2 (message is m2).

What can Eve easily deduce?

Eve can know if c1 = c2 or not. So what?
Eve knows if m1 = m2 or not. Its the NY,NY problem!

That alone makes it insecure.
Plain RSA is never used and should never be used!



Plain RSA Bytes!

Scenario
Eve sees Bob send Alice c1 (message is m1).
Later Eve sees Bob send Alice c2 (message is m2).

What can Eve easily deduce?

Eve can know if c1 = c2 or not. So what?
Eve knows if m1 = m2 or not. Its the NY,NY problem!

That alone makes it insecure.
Plain RSA is never used and should never be used!



Plain RSA Bytes!

Scenario
Eve sees Bob send Alice c1 (message is m1).
Later Eve sees Bob send Alice c2 (message is m2).

What can Eve easily deduce?

Eve can know if c1 = c2 or not. So what?

Eve knows if m1 = m2 or not. Its the NY,NY problem!

That alone makes it insecure.
Plain RSA is never used and should never be used!



Plain RSA Bytes!

Scenario
Eve sees Bob send Alice c1 (message is m1).
Later Eve sees Bob send Alice c2 (message is m2).

What can Eve easily deduce?

Eve can know if c1 = c2 or not. So what?
Eve knows if m1 = m2 or not. Its the NY,NY problem!

That alone makes it insecure.
Plain RSA is never used and should never be used!



Plain RSA Bytes!

Scenario
Eve sees Bob send Alice c1 (message is m1).
Later Eve sees Bob send Alice c2 (message is m2).

What can Eve easily deduce?

Eve can know if c1 = c2 or not. So what?
Eve knows if m1 = m2 or not. Its the NY,NY problem!

That alone makes it insecure.

Plain RSA is never used and should never be used!



Plain RSA Bytes!

Scenario
Eve sees Bob send Alice c1 (message is m1).
Later Eve sees Bob send Alice c2 (message is m2).

What can Eve easily deduce?

Eve can know if c1 = c2 or not. So what?
Eve knows if m1 = m2 or not. Its the NY,NY problem!

That alone makes it insecure.
Plain RSA is never used and should never be used!



PKCS-1.5 RSA

We need to change how Bob sends a message;
BAD To send m ∈ {1, . . . ,N − 1}, send me (mod N).

FIX To send m ∈ {1, . . . ,N − 1}, pick rand r , send (rm)e .
(NOTE- rm means r CONCAT with m here and elsewhere.) Alice
and Bob agree on length of r ahead of time.

Alice and Bob pick L1 and L2 such that lgN = L1 + L2.
To send m ∈ {0, 1}L2 pick random r ∈ {0, 1}L1 .
When Alice gets rm she will know that m is the last L2 bits.



PKCS-1.5 RSA

We need to change how Bob sends a message;
BAD To send m ∈ {1, . . . ,N − 1}, send me (mod N).

FIX To send m ∈ {1, . . . ,N − 1}, pick rand r , send (rm)e .
(NOTE- rm means r CONCAT with m here and elsewhere.) Alice
and Bob agree on length of r ahead of time.

Alice and Bob pick L1 and L2 such that lgN = L1 + L2.
To send m ∈ {0, 1}L2 pick random r ∈ {0, 1}L1 .
When Alice gets rm she will know that m is the last L2 bits.



PKCS-1.5 RSA

We need to change how Bob sends a message;
BAD To send m ∈ {1, . . . ,N − 1}, send me (mod N).

FIX To send m ∈ {1, . . . ,N − 1}, pick rand r , send (rm)e .
(NOTE- rm means r CONCAT with m here and elsewhere.) Alice
and Bob agree on length of r ahead of time.

Alice and Bob pick L1 and L2 such that lgN = L1 + L2.
To send m ∈ {0, 1}L2 pick random r ∈ {0, 1}L1 .
When Alice gets rm she will know that m is the last L2 bits.



RSA Misc



RSA has other Problems

An encryption system is malleable if when Eve sees a message she
can figure out a way to send a similar one, where she knows the
similarity (she still does not know the message).

1. The definition above is informal.

2. Can modify RSA so that it’s probably not malleable.

3. That way is called PKCS-2.0-RSA.

4. Name BLAH-1.5 is hint that it’s not final version.

5. There are other issues that RSA needs to deal with and does,
so the real RSA that is used adds more to what I’ve said here.



RSA has other Problems

An encryption system is malleable if when Eve sees a message she
can figure out a way to send a similar one, where she knows the
similarity (she still does not know the message).

1. The definition above is informal.

2. Can modify RSA so that it’s probably not malleable.

3. That way is called PKCS-2.0-RSA.

4. Name BLAH-1.5 is hint that it’s not final version.

5. There are other issues that RSA needs to deal with and does,
so the real RSA that is used adds more to what I’ve said here.



RSA has other Problems

An encryption system is malleable if when Eve sees a message she
can figure out a way to send a similar one, where she knows the
similarity (she still does not know the message).

1. The definition above is informal.

2. Can modify RSA so that it’s probably not malleable.

3. That way is called PKCS-2.0-RSA.

4. Name BLAH-1.5 is hint that it’s not final version.

5. There are other issues that RSA needs to deal with and does,
so the real RSA that is used adds more to what I’ve said here.



RSA has other Problems

An encryption system is malleable if when Eve sees a message she
can figure out a way to send a similar one, where she knows the
similarity (she still does not know the message).

1. The definition above is informal.

2. Can modify RSA so that it’s probably not malleable.

3. That way is called PKCS-2.0-RSA.

4. Name BLAH-1.5 is hint that it’s not final version.

5. There are other issues that RSA needs to deal with and does,
so the real RSA that is used adds more to what I’ve said here.



RSA has other Problems

An encryption system is malleable if when Eve sees a message she
can figure out a way to send a similar one, where she knows the
similarity (she still does not know the message).

1. The definition above is informal.

2. Can modify RSA so that it’s probably not malleable.

3. That way is called PKCS-2.0-RSA.

4. Name BLAH-1.5 is hint that it’s not final version.

5. There are other issues that RSA needs to deal with and does,
so the real RSA that is used adds more to what I’ve said here.



RSA has other Problems

An encryption system is malleable if when Eve sees a message she
can figure out a way to send a similar one, where she knows the
similarity (she still does not know the message).

1. The definition above is informal.

2. Can modify RSA so that it’s probably not malleable.

3. That way is called PKCS-2.0-RSA.

4. Name BLAH-1.5 is hint that it’s not final version.

5. There are other issues that RSA needs to deal with and does,
so the real RSA that is used adds more to what I’ve said here.



Rabin’s Encryption System and its Variants

1. Rabin’s enc equivalent to factoring pq.

2. Rabin’s enc is hard to use: messages do not decode uniquely.

3. Blum-Williams modified Rabin’s Enc so that messages decode
uniquely; but the set of messages you can send is small.

4. Hard to combine Blum-Williams modification with the
padding needed to solve NY,NY problem.

5. Cracking Rabin Enc EQUIV factoring: but this is only if Eve
has no other information.

6. If Eve can trick Alice into sending a chosen message, she can
crack Rabin. So Chosen Plaintext Attack-insecure.



Rabin’s Encryption System and its Variants

1. Rabin’s enc equivalent to factoring pq.

2. Rabin’s enc is hard to use: messages do not decode uniquely.

3. Blum-Williams modified Rabin’s Enc so that messages decode
uniquely; but the set of messages you can send is small.

4. Hard to combine Blum-Williams modification with the
padding needed to solve NY,NY problem.

5. Cracking Rabin Enc EQUIV factoring: but this is only if Eve
has no other information.

6. If Eve can trick Alice into sending a chosen message, she can
crack Rabin. So Chosen Plaintext Attack-insecure.



Rabin’s Encryption System and its Variants

1. Rabin’s enc equivalent to factoring pq.

2. Rabin’s enc is hard to use: messages do not decode uniquely.

3. Blum-Williams modified Rabin’s Enc so that messages decode
uniquely; but the set of messages you can send is small.

4. Hard to combine Blum-Williams modification with the
padding needed to solve NY,NY problem.

5. Cracking Rabin Enc EQUIV factoring: but this is only if Eve
has no other information.

6. If Eve can trick Alice into sending a chosen message, she can
crack Rabin. So Chosen Plaintext Attack-insecure.



Rabin’s Encryption System and its Variants

1. Rabin’s enc equivalent to factoring pq.

2. Rabin’s enc is hard to use: messages do not decode uniquely.

3. Blum-Williams modified Rabin’s Enc so that messages decode
uniquely; but the set of messages you can send is small.

4. Hard to combine Blum-Williams modification with the
padding needed to solve NY,NY problem.

5. Cracking Rabin Enc EQUIV factoring: but this is only if Eve
has no other information.

6. If Eve can trick Alice into sending a chosen message, she can
crack Rabin. So Chosen Plaintext Attack-insecure.



Rabin’s Encryption System and its Variants

1. Rabin’s enc equivalent to factoring pq.

2. Rabin’s enc is hard to use: messages do not decode uniquely.

3. Blum-Williams modified Rabin’s Enc so that messages decode
uniquely; but the set of messages you can send is small.

4. Hard to combine Blum-Williams modification with the
padding needed to solve NY,NY problem.

5. Cracking Rabin Enc EQUIV factoring: but this is only if Eve
has no other information.

6. If Eve can trick Alice into sending a chosen message, she can
crack Rabin. So Chosen Plaintext Attack-insecure.



Rabin’s Encryption System and its Variants

1. Rabin’s enc equivalent to factoring pq.

2. Rabin’s enc is hard to use: messages do not decode uniquely.

3. Blum-Williams modified Rabin’s Enc so that messages decode
uniquely; but the set of messages you can send is small.

4. Hard to combine Blum-Williams modification with the
padding needed to solve NY,NY problem.

5. Cracking Rabin Enc EQUIV factoring: but this is only if Eve
has no other information.

6. If Eve can trick Alice into sending a chosen message, she can
crack Rabin. So Chosen Plaintext Attack-insecure.



Rabin’s Encryption System and its Variants

1. Rabin’s enc equivalent to factoring pq.

2. Rabin’s enc is hard to use: messages do not decode uniquely.

3. Blum-Williams modified Rabin’s Enc so that messages decode
uniquely; but the set of messages you can send is small.

4. Hard to combine Blum-Williams modification with the
padding needed to solve NY,NY problem.

5. Cracking Rabin Enc EQUIV factoring: but this is only if Eve
has no other information.

6. If Eve can trick Alice into sending a chosen message, she can
crack Rabin. So Chosen Plaintext Attack-insecure.



Summary of RSA

1. PKCS-2.0-RSA is REALLY used!

2. There are many variants of RSA but all use the ideas above.

3. Factoring easy implies RSA crackable. TRUE.

4. RSA crackable implies Factoring easy: UNKNOWN.

5. RSA crackable implies Factoring easy: Often stated in
expositions of crypto. They are wrong!



Summary of RSA

1. PKCS-2.0-RSA is REALLY used!

2. There are many variants of RSA but all use the ideas above.

3. Factoring easy implies RSA crackable. TRUE.

4. RSA crackable implies Factoring easy: UNKNOWN.

5. RSA crackable implies Factoring easy: Often stated in
expositions of crypto. They are wrong!



Summary of RSA

1. PKCS-2.0-RSA is REALLY used!

2. There are many variants of RSA but all use the ideas above.

3. Factoring easy implies RSA crackable. TRUE.

4. RSA crackable implies Factoring easy: UNKNOWN.

5. RSA crackable implies Factoring easy: Often stated in
expositions of crypto. They are wrong!



Summary of RSA

1. PKCS-2.0-RSA is REALLY used!

2. There are many variants of RSA but all use the ideas above.

3. Factoring easy implies RSA crackable. TRUE.

4. RSA crackable implies Factoring easy: UNKNOWN.

5. RSA crackable implies Factoring easy: Often stated in
expositions of crypto. They are wrong!



Summary of RSA

1. PKCS-2.0-RSA is REALLY used!

2. There are many variants of RSA but all use the ideas above.

3. Factoring easy implies RSA crackable. TRUE.

4. RSA crackable implies Factoring easy: UNKNOWN.

5. RSA crackable implies Factoring easy: Often stated in
expositions of crypto. They are wrong!



Summary of RSA

1. PKCS-2.0-RSA is REALLY used!

2. There are many variants of RSA but all use the ideas above.

3. Factoring easy implies RSA crackable. TRUE.

4. RSA crackable implies Factoring easy: UNKNOWN.

5. RSA crackable implies Factoring easy: Often stated in
expositions of crypto. They are wrong!



Public Key Not Based on Factoring

What if Factoring can be done fast (quantum, fancy number
theory, better hardware)?

1. Since 1960:

1.1 Math-advances have sped up factoring by 1000 times.
1.2 Hardware-advances have sped up factoring by 1000 times.
1.3 So Factoring has been sped up 1,000,000 times.

2. Factoring is in Quantum P, though making that practical
seems a ways off.

3. There are now several Public Key Systems based on other
hardness assumptions. They are not used yet as they need to
be tested. Chicken-and-Egg Problem.



Public Key Not Based on Factoring

What if Factoring can be done fast (quantum, fancy number
theory, better hardware)?

1. Since 1960:

1.1 Math-advances have sped up factoring by 1000 times.
1.2 Hardware-advances have sped up factoring by 1000 times.
1.3 So Factoring has been sped up 1,000,000 times.

2. Factoring is in Quantum P, though making that practical
seems a ways off.

3. There are now several Public Key Systems based on other
hardness assumptions. They are not used yet as they need to
be tested. Chicken-and-Egg Problem.



Public Key Not Based on Factoring

What if Factoring can be done fast (quantum, fancy number
theory, better hardware)?

1. Since 1960:

1.1 Math-advances have sped up factoring by 1000 times.

1.2 Hardware-advances have sped up factoring by 1000 times.
1.3 So Factoring has been sped up 1,000,000 times.

2. Factoring is in Quantum P, though making that practical
seems a ways off.

3. There are now several Public Key Systems based on other
hardness assumptions. They are not used yet as they need to
be tested. Chicken-and-Egg Problem.



Public Key Not Based on Factoring

What if Factoring can be done fast (quantum, fancy number
theory, better hardware)?

1. Since 1960:

1.1 Math-advances have sped up factoring by 1000 times.
1.2 Hardware-advances have sped up factoring by 1000 times.

1.3 So Factoring has been sped up 1,000,000 times.

2. Factoring is in Quantum P, though making that practical
seems a ways off.

3. There are now several Public Key Systems based on other
hardness assumptions. They are not used yet as they need to
be tested. Chicken-and-Egg Problem.



Public Key Not Based on Factoring

What if Factoring can be done fast (quantum, fancy number
theory, better hardware)?

1. Since 1960:

1.1 Math-advances have sped up factoring by 1000 times.
1.2 Hardware-advances have sped up factoring by 1000 times.
1.3 So Factoring has been sped up 1,000,000 times.

2. Factoring is in Quantum P, though making that practical
seems a ways off.

3. There are now several Public Key Systems based on other
hardness assumptions. They are not used yet as they need to
be tested. Chicken-and-Egg Problem.



Public Key Not Based on Factoring

What if Factoring can be done fast (quantum, fancy number
theory, better hardware)?

1. Since 1960:

1.1 Math-advances have sped up factoring by 1000 times.
1.2 Hardware-advances have sped up factoring by 1000 times.
1.3 So Factoring has been sped up 1,000,000 times.

2. Factoring is in Quantum P, though making that practical
seems a ways off.

3. There are now several Public Key Systems based on other
hardness assumptions. They are not used yet as they need to
be tested. Chicken-and-Egg Problem.



Public Key Not Based on Factoring

What if Factoring can be done fast (quantum, fancy number
theory, better hardware)?

1. Since 1960:

1.1 Math-advances have sped up factoring by 1000 times.
1.2 Hardware-advances have sped up factoring by 1000 times.
1.3 So Factoring has been sped up 1,000,000 times.

2. Factoring is in Quantum P, though making that practical
seems a ways off.

3. There are now several Public Key Systems based on other
hardness assumptions. They are not used yet as they need to
be tested. Chicken-and-Egg Problem.



BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!


