BILL RECORDED LECTURE

REVIEW FOR MIDTERM

SHIFT CIPHER

The Shift Cipher, Formally

- $\mathcal{M}=\{$ all texts in lowercase English alphabet $\}$
\mathcal{M} for Message space.
All arithmetic mod 26.
- Choose uniform $s \in \mathcal{K}=\{0, \ldots, 25\}$. \mathcal{K} for Keyspace.
- Encode $\left(m_{1} \ldots m_{t}\right)$ as $\left(m_{1}+s \ldots m_{t}+s\right)$.
- Decode $\left(c_{1} \ldots c_{t}\right)$ as $\left(c_{1}-s \ldots c_{t}-s\right)$.
- Can verify that correctness holds.

Freq Vectors

Let T be a long text. Length N. May or may not be coded.
Let N_{a} be the number of $a^{\prime} s$ in T.
Let N_{b} be the number of $b^{\prime} s$ in T.

Freq Vectors

Let T be a long text. Length N. May or may not be coded.
Let N_{a} be the number of $a^{\prime} s$ in T.
Let N_{b} be the number of $b^{\prime} s$ in T.

The Freq Vector of T is

$$
\overrightarrow{f_{T}}=\left(\frac{N_{a}}{N}, \frac{N_{b}}{N}, \cdots, \frac{N_{z}}{N}\right)
$$

English Alphabet: $\{a, \ldots, z\}$

- English freq shifted by 0 is \vec{f}_{0}
- For $1 \leq i \leq 25$, English freq shifted by i is $\overrightarrow{f_{i}}$.

English Alphabet: $\{a, \ldots, z\}$

- English freq shifted by 0 is $\overrightarrow{f_{0}}$
- For $1 \leq i \leq 25$, English freq shifted by i is $\overrightarrow{f_{i}}$.

$$
\overrightarrow{f_{0}} \cdot \overrightarrow{f_{0}} \sim 0.065
$$

English Alphabet: $\{a, \ldots, z\}$

- English freq shifted by 0 is \vec{f}_{0}
- For $1 \leq i \leq 25$, English freq shifted by i is $\overrightarrow{f_{i}}$.

$$
\begin{aligned}
& \overrightarrow{f_{0}} \cdot \vec{f}_{0} \sim 0.065 \\
& \max _{1 \leq i \leq 25} \vec{f}_{0} \cdot \vec{f}_{i} \sim 0.038
\end{aligned}
$$

English Alphabet: $\{a, \ldots, z\}$

- English freq shifted by 0 is \vec{f}_{0}
- For $1 \leq i \leq 25$, English freq shifted by i is \vec{f}_{i}.
$\overrightarrow{f_{0}} \cdot \overrightarrow{f_{0}} \sim 0.065$
$\max _{1 \leq i \leq 25} \vec{f}_{0} \cdot \vec{f}_{i} \sim 0.038$
Upshot
$\overrightarrow{f_{0}} \cdot \vec{f}_{0} \mathbf{b i g}$
For $i \in\{1, \ldots, 25\}, \vec{f}_{0} \cdot \vec{f}_{i}$ small

English Alphabet: $\{a, \ldots, z\}$

- English freq shifted by 0 is \vec{f}_{0}
- For $1 \leq i \leq 25$, English freq shifted by i is $\overrightarrow{f_{i}}$.
$\overrightarrow{f_{0}} \cdot \vec{f}_{0} \sim 0.065$
$\max _{1 \leq i \leq 25} \vec{f}_{0} \cdot \vec{f}_{i} \sim 0.038$
Upshot
$\overrightarrow{f_{0}} \cdot \overrightarrow{f_{0}} \mathbf{b i g}$
For $i \in\{1, \ldots, 25\}, \overrightarrow{f_{0}} \cdot \overrightarrow{f_{i}}$ small
Henceforth \vec{f}_{0} will be denoted \vec{f}_{E}. E is for English

Is English

We describe a way to tell if a text Is English that we will use throughout this course.

Is English

We describe a way to tell if a text Is English that we will use throughout this course.

1. $\operatorname{Input}(T)$ a text
2. Compute $\overrightarrow{f_{T}}$, the freq vector for T
3. Compute $\overrightarrow{f_{E}} \cdot \overrightarrow{f_{T}}$. If ≈ 0.065 then output YES, else NO

Is English

We describe a way to tell if a text Is English that we will use throughout this course.

1. $\operatorname{Input}(T)$ a text
2. Compute $\overrightarrow{f_{T}}$, the freq vector for T
3. Compute $\overrightarrow{f_{E}} \cdot \overrightarrow{f_{T}}$. If ≈ 0.065 then output YES, else NO

Note: What if $\overrightarrow{f_{T}} \cdot \overrightarrow{f_{E}}=0.061$?

Is English

We describe a way to tell if a text Is English that we will use throughout this course.

1. $\operatorname{Input}(T)$ a text
2. Compute $\overrightarrow{f_{T}}$, the freq vector for T
3. Compute $\overrightarrow{f_{E}} \cdot \overrightarrow{f_{T}}$. If ≈ 0.065 then output YES, else NO

Note: What if $\overrightarrow{f_{T}} \cdot \overrightarrow{f_{E}}=0.061$?
If shift cipher used, this will never happen.

Is English

We describe a way to tell if a text Is English that we will use throughout this course.

1. $\operatorname{Input}(T)$ a text
2. Compute $\overrightarrow{f_{T}}$, the freq vector for T
3. Compute $\overrightarrow{f_{E}} \cdot \overrightarrow{f_{T}}$. If ≈ 0.065 then output YES, else NO

Note: What if $\overrightarrow{f_{T}} \cdot \overrightarrow{f_{E}}=0.061$?
If shift cipher used, this will never happen.
If simple ciphers used, this will never happen.

Is English

We describe a way to tell if a text Is English that we will use throughout this course.

1. $\operatorname{Input}(T)$ a text
2. Compute $\overrightarrow{f_{T}}$, the freq vector for T
3. Compute $\overrightarrow{f_{E}} \cdot \overrightarrow{f_{T}}$. If ≈ 0.065 then output YES, else NO

Note: What if $\overrightarrow{T_{T}} \cdot \overrightarrow{f_{E}}=0.061$?
If shift cipher used, this will never happen.
If simple ciphers used, this will never happen.
If complicated cipher used, we may use different IS-ENGLISH function.

Cracking Shift Cipher

- Given T a long text that you KNOW was coded by shift.

Cracking Shift Cipher

- Given T a long text that you KNOW was coded by shift.
- For $s=0$ to 25
- Create T_{s} which is T shifted by s.

Cracking Shift Cipher

- Given T a long text that you KNOW was coded by shift.
- For $s=0$ to 25
- Create T_{s} which is T shifted by s.
- If Is English $\left(T_{s}\right)=$ YES then output T_{s} and stop. Else try next value of s.

Cracking Shift Cipher

- Given T a long text that you KNOW was coded by shift.
- For $s=0$ to 25
- Create T_{s} which is T shifted by s.
- If Is English $\left(T_{s}\right)=$ YES then output T_{s} and stop. Else try next value of s.
Note: No Near Misses. There will not be two values of s that are both close to 0.065 .

Variants of the Shift Cipher

Variants of the Shift Cipher

1. Different alphabets.

Variants of the Shift Cipher

1. Different alphabets.
2. Differnt languages.

Variants of the Shift Cipher

1. Different alphabets.
2. Differnt languages.
3. Different domains (e.g., Credit Card Numbers).

Variants of the Shift Cipher

1. Different alphabets.
2. Differnt languages.
3. Different domains (e.g., Credit Card Numbers).
4. $\Sigma=\{0, \ldots, 9\}$ (e.g, Credit Cards).

Variants of the Shift Cipher

1. Different alphabets.
2. Differnt languages.
3. Different domains (e.g., Credit Card Numbers).
4. $\Sigma=\{0, \ldots, 9\}$ (e.g, Credit Cards).

These all have

1. Small key spaces.
2. Uneven distribution of symbols.

So can be cracked.

Kerckhoff's principle

We made the comment We KNOW that SHIFT was used. More generally we will always use the following assumption. Kerckhoff's principle:

Kerckhoff's principle

We made the comment We KNOW that SHIFT was used. More generally we will always use the following assumption. Kerckhoff's principle:

- Eve knows The encryption scheme.

Kerckhoff's principle

We made the comment We KNOW that SHIFT was used. More generally we will always use the following assumption. Kerckhoff's principle:

- Eve knows The encryption scheme.
- Eve knows the alphabet and the language.

Kerckhoff's principle

We made the comment We KNOW that SHIFT was used. More generally we will always use the following assumption. Kerckhoff's principle:

- Eve knows The encryption scheme.
- Eve knows the alphabet and the language.
- Eve does not know the key

Kerckhoff's principle

We made the comment We KNOW that SHIFT was used. More generally we will always use the following assumption. Kerckhoff's principle:

- Eve knows The encryption scheme.
- Eve knows the alphabet and the language.
- Eve does not know the key
- The key is chosen at random.

Other Single Letter Ciphers

Affine Cipher

Def The Affine cipher with a, b :

1. Encrypt via $x \rightarrow a x+b(\bmod 26)$. (a has to be rel prime to 26 so that $a^{-1}(\bmod 26)$ exists.
2. Decrypt via $x \rightarrow a^{-1}(x-b)(\bmod 26)$.

Limit on Keys (a, b) must be such that a has an inverse.
Number of $(a, b) \phi(|\Sigma|) \times|\Sigma|$.
Easily cracked Only 312 keys. Use Is-English for each key.

The Quadratic Cipher

Def The Quadratic cipher with a, b, c : Encrypt via $x \rightarrow a x^{2}+b x+c(\bmod 26)$.

The Quadratic Cipher

Def The Quadratic cipher with a, b, c : Encrypt via $x \rightarrow a x^{2}+b x+c(\bmod 26)$.
Does not work and was never used because:
No easy test for Invertibility (depends on def of easy).

General Substitution Cipher

Def Gen Sub Cipher with perm f on $\{0, \ldots, 25\}$.

General Substitution Cipher

Def Gen Sub Cipher with perm f on $\{0, \ldots, 25\}$.

1. Encrypt via $x \rightarrow f(x)$.

General Substitution Cipher

Def Gen Sub Cipher with perm f on $\{0, \ldots, 25\}$.

1. Encrypt via $x \rightarrow f(x)$.
2. Decrypt via $x \rightarrow f^{-1}(x)$.

General Substitution Cipher

Def Gen Sub Cipher with perm f on $\{0, \ldots, 25\}$.

1. Encrypt via $x \rightarrow f(x)$.
2. Decrypt via $x \rightarrow f^{-1}(x)$.

PRO Very Large Key Space: 26!, so brute force not an option.

General Substitution Cipher

Def Gen Sub Cipher with perm f on $\{0, \ldots, 25\}$.

1. Encrypt via $x \rightarrow f(x)$.
2. Decrypt via $x \rightarrow f^{-1}(x)$.

PRO Very Large Key Space: 26!, so brute force not an option.
CON 100 years ago Hard to use, so we will look at alternatives that take a short seed and get a random looking perm.

General Substitution Cipher

Def Gen Sub Cipher with perm f on $\{0, \ldots, 25\}$.

1. Encrypt via $x \rightarrow f(x)$.
2. Decrypt via $x \rightarrow f^{-1}(x)$.

PRO Very Large Key Space: 26!, so brute force not an option.
CON 100 years ago Hard to use, so we will look at alternatives that take a short seed and get a random looking perm.
CON today Crackable. We discuss how later.

Keyword-Shift Cipher. Key is (Word,Shift)

$$
\Sigma=\{a, \ldots, k\} . \text { Key: (jack, 4). }
$$

Keyword-Shift Cipher. Key is (Word,Shift)

$$
\Sigma=\{a, \ldots, k\} . \text { Key: (jack, 4). }
$$

Alice then does the following:

Keyword-Shift Cipher. Key is (Word,Shift)

$$
\Sigma=\{a, \ldots, k\} . \text { Key: (jack, 4). }
$$

Alice then does the following:

1. List out the key word and then the remaining letters:

$$
|j| a|c| k|b| d|e| f|g| h|i|
$$

Keyword-Shift Cipher. Key is (Word,Shift)

$\Sigma=\{a, \ldots, k\}$. Key: (jack, 4).
Alice then does the following:

1. List out the key word and then the remaining letters:

$$
|j| a|c| k|b| d|e| f|g| h|i|
$$

2. Now do Shift 4 on this:

$$
|f| g|h| i|j| a|c| k|b| d|e|
$$

Keyword-Shift Cipher. Key is (Word,Shift)

$\Sigma=\{a, \ldots, k\}$. Key: (jack, 4).
Alice then does the following:

1. List out the key word and then the remaining letters:

$$
|j| a|c| k|b| d|e| f|g| h|i|
$$

2. Now do Shift 4 on this:

$$
|f| g|h| i|j| a|c| k|b| d|e|
$$

This is where a, b, c, \ldots go, so:

$$
\left\lvert\, \begin{array}{l|l|l|l|l|l|l|l|l|l|l|}
a & b & c & d & e & f & g & h & i & j & k \\
f & g & h & i & j & a & c & k & b & d & e
\end{array}\right.
$$

UPSHOT

1000 years ago

UPSHOT

1000 years ago

1. General Sub Student was hard to use and hard to crack

UPSHOT

1000 years ago

1. General Sub Student was hard to use and hard to crack
2. Keyword Shift cipher was easy to use and hard to crack since looked random..

Today

UPSHOT

1000 years ago

1. General Sub Student was hard to use and hard to crack
2. Keyword Shift cipher was easy to use and hard to crack since looked random..

Today

1. General Sub Student easy to use and easy to crack.

UPSHOT

1000 years ago

1. General Sub Student was hard to use and hard to crack
2. Keyword Shift cipher was easy to use and hard to crack since looked random..

Today

1. General Sub Student easy to use and easy to crack.
2. Keyword Shift cipher is a pedagogical example of a psuedo-random generator.

UPSHOT

1000 years ago

1. General Sub Student was hard to use and hard to crack
2. Keyword Shift cipher was easy to use and hard to crack since looked random..

Today

1. General Sub Student easy to use and easy to crack.
2. Keyword Shift cipher is a pedagogical example of a psuedo-random generator.
3. A psuedo-random generator takes a short random string and produces a long psuedo-random string.

UPSHOT

1000 years ago

1. General Sub Student was hard to use and hard to crack
2. Keyword Shift cipher was easy to use and hard to crack since looked random..

Today

1. General Sub Student easy to use and easy to crack.
2. Keyword Shift cipher is a pedagogical example of a psuedo-random generator.
3. A psuedo-random generator takes a short random string and produces a long psuedo-random string.
4. Psuedo-random generators are important in modern crypto to use a psuedo-one-time-pad.

UPSHOT

1000 years ago

1. General Sub Student was hard to use and hard to crack
2. Keyword Shift cipher was easy to use and hard to crack since looked random..

Today

1. General Sub Student easy to use and easy to crack.
2. Keyword Shift cipher is a pedagogical example of a psuedo-random generator.
3. A psuedo-random generator takes a short random string and produces a long psuedo-random string.
4. Psuedo-random generators are important in modern crypto to use a psuedo-one-time-pad.
5. We will see examples of modern psuedo-random generators later in the course.

Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1 -grams of T are just the letters in T, counting repeats.

Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T, counting repeats.
2. The 2-grams of T are just the contiguous pairs of letters in T, counting repeats. Also called bigrams.

Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T, counting repeats.
2. The 2-grams of T are just the contiguous pairs of letters in T, counting repeats. Also called bigrams.
3. The 3-grams of T you can guess. Also called trigrams.

Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T, counting repeats.
2. The 2-grams of T are just the contiguous pairs of letters in T, counting repeats. Also called bigrams.
3. The 3-grams of T you can guess. Also called trigrams.
4. One usually talks about the freq of n-grams.

Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. f_{E} is freq of n-grams. It is a 26^{n} long vector. (Formally we should use $f_{E}(n)$. We omit the n. The value of n will be clear from context.)

Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. f_{E} is freq of n-grams. It is a 26^{n} long vector. (Formally we should use $f_{E}(n)$. We omit the n. The value of n will be clear from context.)
2. $\sigma(T)$ is taking T and applying σ to it. If σ^{-1} was used to encrypt, then $\sigma(T)$ will be English!

Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. f_{E} is freq of n-grams. It is a 26^{n} long vector. (Formally we should use $f_{E}(n)$. We omit the n. The value of n will be clear from context.)
2. $\sigma(T)$ is taking T and applying σ to it. If σ^{-1} was used to encrypt, then $\sigma(T)$ will be English!
3. $f_{\sigma(T)}$ is the 26^{n}-long vector of freq's of n-grams in $\sigma(T)$.

Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. f_{E} is freq of n-grams. It is a 26^{n} long vector. (Formally we should use $f_{E}(n)$. We omit the n. The value of n will be clear from context.)
2. $\sigma(T)$ is taking T and applying σ to it. If σ^{-1} was used to encrypt, then $\sigma(T)$ will be English!
3. $f_{\sigma(T)}$ is the 26^{n}-long vector of freq's of n-grams in $\sigma(T)$.
4. I and R will be parameters we discuss later.

Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. f_{E} is freq of n-grams. It is a 26^{n} long vector. (Formally we should use $f_{E}(n)$. We omit the n. The value of n will be clear from context.)
2. $\sigma(T)$ is taking T and applying σ to it. If σ^{-1} was used to encrypt, then $\sigma(T)$ will be English!
3. $f_{\sigma(T)}$ is the 26^{n}-long vector of freq's of n-grams in $\sigma(T)$.
4. I and R will be parameters we discuss later.

I stands for Iterations and will be large (like 2000).

Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. f_{E} is freq of n-grams. It is a 26^{n} long vector. (Formally we should use $f_{E}(n)$. We omit the n. The value of n will be clear from context.)
2. $\sigma(T)$ is taking T and applying σ to it. If σ^{-1} was used to encrypt, then $\sigma(T)$ will be English!
3. $f_{\sigma(T)}$ is the 26^{n}-long vector of freq's of n-grams in $\sigma(T)$.
4. I and R will be parameters we discuss later.

I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).

n-Gram Algorithm

Input T. Find Freq of 1 -grams and n-grams.

n-Gram Algorithm

Input T. Find Freq of 1 -grams and n-grams.
$\sigma_{\text {init }}$ is perm that maps most freq to e, etc. Uses 1 -gram freq.

n-Gram Algorithm

Input T. Find Freq of 1 -grams and n-grams.
$\sigma_{\text {init }}$ is perm that maps most freq to e, etc. Uses 1 -gram freq.
For $r=1$ to R (R is small, about 5)

n-Gram Algorithm

Input T. Find Freq of 1 -grams and n-grams.
$\sigma_{\text {init }}$ is perm that maps most freq to e, etc. Uses 1 -gram freq.
For $r=1$ to R (R is small, about 5)

$$
\sigma_{r} \leftarrow \sigma_{\text {init }}
$$

n-Gram Algorithm

Input T. Find Freq of 1 -grams and n-grams.
$\sigma_{\text {init }}$ is perm that maps most freq to e, etc. Uses 1 -gram freq.
For $r=1$ to R (R is small, about 5)

$$
\begin{aligned}
& \sigma_{r} \leftarrow \sigma_{\text {init }} \\
& \text { For } i=1 \text { to I (I is large, about 2000) }
\end{aligned}
$$

n-Gram Algorithm

Input T. Find Freq of 1 -grams and n-grams.
$\sigma_{\text {init }}$ is perm that maps most freq to e, etc. Uses 1 -gram freq.
For $r=1$ to R (R is small, about 5)

$$
\begin{aligned}
& \sigma_{r} \leftarrow \sigma_{\text {init }} \\
& \text { For } i=1 \text { to } \mathrm{I}(\mathrm{I} \text { is large, about 2000) } \\
& \quad \text { Pick } j, k \in\{0, \ldots, 25\} \text { at Random. }
\end{aligned}
$$

n-Gram Algorithm

Input T. Find Freq of 1 -grams and n-grams.
$\sigma_{\text {init }}$ is perm that maps most freq to e, etc. Uses 1 -gram freq.
For $r=1$ to R (R is small, about 5)

$$
\sigma_{r} \leftarrow \sigma_{\mathrm{init}}
$$

For $i=1$ to I (I is large, about 2000)
Pick $j, k \in\{0, \ldots, 25\}$ at Random.
Let σ^{\prime} be σ_{r} with j, k swapped

n-Gram Algorithm

Input T. Find Freq of 1 -grams and n-grams.
$\sigma_{\text {init }}$ is perm that maps most freq to e, etc. Uses 1 -gram freq.
For $r=1$ to R (R is small, about 5)

$$
\begin{aligned}
& \sigma_{r} \leftarrow \sigma_{\text {init }} \\
& \text { For } i=1 \text { to } \mathrm{I}(\mathrm{I} \text { is large, about 2000) } \\
& \quad \text { Pick } j, k \in\{0, \ldots, 25\} \text { at Random. } \\
& \quad \text { Let } \sigma^{\prime} \text { be } \sigma_{r} \text { with } j, k \text { swapped } \\
& \quad \text { If } f_{\sigma^{\prime}(T)} \cdot f_{E}>f_{\sigma_{r}(T)} \cdot f_{E} \text { then } \sigma_{r} \leftarrow \sigma^{\prime}
\end{aligned}
$$

n-Gram Algorithm

Input T. Find Freq of 1 -grams and n-grams.
$\sigma_{\text {init }}$ is perm that maps most freq to e, etc. Uses 1 -gram freq.
For $r=1$ to R (R is small, about 5)

$$
\begin{aligned}
& \sigma_{r} \leftarrow \sigma_{\text {init }} \\
& \text { For } i=1 \text { to } \mathrm{I}(\mathrm{I} \text { is large, about } 2000) \\
& \quad \text { Pick } j, k \in\{0, \ldots, 25\} \text { at Random. } \\
& \quad \text { Let } \sigma^{\prime} \text { be } \sigma_{r} \text { with } j, k \text { swapped } \\
& \quad \text { If } f_{\sigma^{\prime}(T)} \cdot f_{E}>f_{\sigma_{r}(T)} \cdot f_{E} \text { then } \sigma_{r} \leftarrow \sigma^{\prime}
\end{aligned}
$$

Candidates for σ are $\sigma_{1}, \ldots, \sigma_{\mathrm{R}}$

n-Gram Algorithm

Input T. Find Freq of 1 -grams and n-grams.
$\sigma_{\text {init }}$ is perm that maps most freq to e, etc. Uses 1 -gram freq.
For $r=1$ to R (R is small, about 5)

$$
\begin{aligned}
& \sigma_{r} \leftarrow \sigma_{\text {init }} \\
& \text { For } i=1 \text { to } \mathrm{I}(\mathrm{I} \text { is large, about 2000) } \\
& \quad \text { Pick } j, k \in\{0, \ldots, 25\} \text { at Random. } \\
& \quad \text { Let } \sigma^{\prime} \text { be } \sigma_{r} \text { with } j, k \text { swapped } \\
& \text { If } f_{\sigma^{\prime}(T)} \cdot f_{E}>f_{\sigma_{r}(T)} \cdot f_{E} \text { then } \sigma_{r} \leftarrow \sigma^{\prime}
\end{aligned}
$$

Candidates for σ are $\sigma_{1}, \ldots, \sigma_{\mathrm{R}}$
Pick the σ_{r} with min good ${ }_{r}$ or have human look at all $\sigma_{r}(T)$

n-Gram Algorithm

Input T. Find Freq of 1 -grams and n-grams.
$\sigma_{\text {init }}$ is perm that maps most freq to e, etc. Uses 1 -gram freq.
For $r=1$ to R (R is small, about 5)

$$
\begin{aligned}
& \sigma_{r} \leftarrow \sigma_{\text {init }} \\
& \text { For } i=1 \text { to } \mathrm{I}(\mathrm{I} \text { is large, about } 2000) \\
& \quad \text { Pick } j, k \in\{0, \ldots, 25\} \text { at Random. } \\
& \quad \text { Let } \sigma^{\prime} \text { be } \sigma_{r} \text { with } j, k \text { swapped } \\
& \quad \text { If } f_{\sigma^{\prime}(T)} \cdot f_{E}>f_{\sigma_{r}(T)} \cdot f_{E} \text { then } \sigma_{r} \leftarrow \sigma^{\prime}
\end{aligned}
$$

Candidates for σ are $\sigma_{1}, \ldots, \sigma_{\mathrm{R}}$
Pick the σ_{r} with min good ${ }_{r}$ or have human look at all $\sigma_{r}(T)$
The parameters R and I need to be picked carefully.

