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SHIFT CIPHER



The Shift Cipher, Formally

I M = {all texts in lowercase English alphabet}
M for Message space.
All arithmetic mod 26.

I Choose uniform s ∈ K = {0, . . . , 25}. K for Keyspace.

I Encode (m1 . . .mt) as (m1 + s . . .mt + s).

I Decode (c1 . . . ct) as (c1 − s . . . ct − s).

I Can verify that correctness holds.



Freq Vectors

Let T be a long text. Length N. May or may not be coded.

Let Na be the number of a′s in T .
Let Nb be the number of b′s in T .
...

The Freq Vector of T is

~fT =

(
Na

N
,
Nb

N
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English Alphabet: {a, . . . , z}

I English freq shifted by 0 is ~f0
I For 1 ≤ i ≤ 25, English freq shifted by i is ~fi .

~f0 · ~f0 ∼ 0.065

max1≤i≤25 ~f0 · ~fi ∼ 0.038

Upshot
~f0 · ~f0 big
For i ∈ {1, . . . , 25}, ~f0 · ~fi small

Henceforth ~f0 will be denoted ~fE . E is for English
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Is English

We describe a way to tell if a text Is English that we will use
throughout this course.

1. Input(T ) a text

2. Compute ~fT , the freq vector for T

3. Compute ~fE · ~fT . If ≈ 0.065 then output YES, else NO

Note: What if ~fT · ~fE = 0.061?

If shift cipher used, this will never happen.

If simple ciphers used, this will never happen.

If complicated cipher used, we may use different IS-ENGLISH
function.
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Cracking Shift Cipher

I Given T a long text that you KNOW was coded by shift.

I For s = 0 to 25
I Create Ts which is T shifted by s.
I If Is English(Ts)=YES then output Ts and stop. Else try next

value of s.

Note: No Near Misses. There will not be two values of s that are
both close to 0.065.
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Variants of the Shift Cipher

1. Different alphabets.

2. Differnt languages.

3. Different domains (e.g., Credit Card Numbers).

4. Σ = {0, . . . , 9} (e.g, Credit Cards).

These all have

1. Small key spaces.

2. Uneven distribution of symbols.

So can be cracked.
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Kerckhoff’s principle

We made the comment We KNOW that SHIFT was used.
More generally we will always use the following assumption.
Kerckhoff’s principle:

I Eve knows The encryption scheme.

I Eve knows the alphabet and the language.

I Eve does not know the key

I The key is chosen at random.
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Other Single Letter
Ciphers



Affine Cipher

Def The Affine cipher with a, b:

1. Encrypt via x → ax + b (mod 26). (a has to be rel prime to
26 so that a−1 (mod 26) exists.

2. Decrypt via x → a−1(x − b) (mod 26).

Limit on Keys (a, b) must be such that a has an inverse.
Number of (a, b) φ(|Σ|)× |Σ|.
Easily cracked Only 312 keys. Use Is-English for each key.



The Quadratic Cipher

Def The Quadratic cipher with a, b, c : Encrypt via
x → ax2 + bx + c (mod 26).

Does not work and was never used because:
No easy test for Invertibility (depends on def of easy).
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General Substitution Cipher

Def Gen Sub Cipher with perm f on {0, . . . , 25}.

1. Encrypt via x → f (x).

2. Decrypt via x → f −1(x).

PRO Very Large Key Space: 26!, so brute force not an option.
CON 100 years ago Hard to use, so we will look at alternatives
that take a short seed and get a random looking perm.
CON today Crackable. We discuss how later.
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Keyword-Shift Cipher. Key is (Word,Shift)

Σ = {a, . . . , k}. Key: (jack, 4).

Alice then does the following:

1. List out the key word and then the remaining letters:

j a c k b d e f g h i

2. Now do Shift 4 on this:

f g h i j a c k b d e

This is where a, b, c, . . . go, so:

a b c d e f g h i j k
f g h i j a c k b d e
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UPSHOT

1000 years ago

1. General Sub Student was hard to use and hard to crack

2. Keyword Shift cipher was easy to use and hard to crack since
looked random..

Today

1. General Sub Student easy to use and easy to crack.

2. Keyword Shift cipher is a pedagogical example of a
psuedo-random generator.

3. A psuedo-random generator takes a short random string and
produces a long psuedo-random string.

4. Psuedo-random generators are important in modern crypto to
use a psuedo-one-time-pad.

5. We will see examples of modern psuedo-random generators
later in the course.
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Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T , counting repeats.

2. The 2-grams of T are just the contiguous pairs of letters in
T , counting repeats. Also called bigrams.

3. The 3-grams of T you can guess. Also called trigrams.

4. One usually talks about the freq of n-grams.
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Notation and Parameter for a Family of Algorithms

Notation Let σ be a perm and T a text.

1. fE is freq of n-grams. It is a 26n long vector. (Formally we
should use fE (n). We omit the n. The value of n will be clear
from context.)

2. σ(T ) is taking T and applying σ to it. If σ−1 was used to
encrypt, then σ(T ) will be English!

3. fσ(T ) is the 26n-long vector of freq’s of n-grams in σ(T ).

4. I and R will be parameters we discuss later.
I stands for Iterations and will be large (like 2000).
R stands for Redos and will be small (like 5).
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R stands for Redos and will be small (like 5).



n-Gram Algorithm

Input T . Find Freq of 1-grams and n-grams.

σinit is perm that maps most freq to e, etc. Uses 1-gram freq.

For r = 1 to R (R is small, about 5)

σr ← σinit
For i = 1 to I (I is large, about 2000)

Pick j , k ∈ {0, . . . , 25} at Random.
Let σ′ be σr with j , k swapped
If fσ′(T ) · fE > fσr (T ) · fE then σr ← σ′

Candidates for σ are σ1, . . . , σR
Pick the σr with min goodr or have human look at all σr (T )
The parameters R and I need to be picked carefully.
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