
BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!



Math Needed for Both
Diffie-Hellman and RSA



Notation

Let p be a prime.

1. Zp is the numbers {0, . . . , p − 1} with mod add and mult.

2. Z∗
p is the numbers {1, . . . , p − 1} with mod mult.

Convention By prime we will always mean a large prime, so in
particular, NOT 2. Hence we can assume p−1

2 is in N.



Repeated Squaring Algorithm
All math is mod p.

1. Input (a, n, p).

2. Convert n to base 2: n =
∑L

i=0 ni2
i . (L is blg(n)c)

3. x0 = a.

4. For i = 1 to L, xi = x2i−1

5. (Now have an02
0
, . . . , anL2

L
) Answer is an02

0 × · · · × anL2
L

Number of operations:
Number of MULTS in step 4: ≤ blg(n)c ≤ lg(n)
Number of MULTS in step 5: ≤ L = blg(n)c ≤ lg(n)
Total number of MULTS ≤ 2 lg(n).
More refined: lg(n) + (number of 1’s in binary rep of n) − 1
Example on next page
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Example of Exponentiation: 17265 (mod 101)

265 = 28 + 23 + 20 = (100001001)2

172
0 ≡ 17 (0 steps)

172
1 ≡ 172 ≡ 87 (1 step)

172
2 ≡ 872 ≡ 95 (1 step)

172
3 ≡ 952 ≡ 36 (1 step)

172
4 ≡ 362 ≡ 84 (1 step)

172
5 ≡ 842 ≡ 87 (1 step)

172
6 ≡ 872 ≡ 95 (1 step)

172
7 ≡ 952 ≡ 36 (1 step)

172
8 ≡ 362 ≡ 84 (1 step)

This took 8 ∼ lg(265) multiplications so far.
The next step takes only two multiplications:

17265 ≡ 172
8 × 172

3 × 172
0 ≡ 84× 36× 17 ≡ 100

Point: Step 2 took < lg(265) steps since base-2 rep had few 1’s.
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An Important Point That Some Students Missed

Bill Kunal, many students on piazza seem to say their programs
are taking too long. Whats up with that?

Kunal In repeated squaring you are supposed to do the MOD p at
EVERY STEP. Half of the students who emailed were doing the
exponentiation and THEN doing the MOD p, so they had really
large intermediary numbers which slowed things down.

Bill I will emphasize that in class when I do the review.
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Generators and Discrete
Logarithms



Formally Discrete Log is. . .

Def The Discrete Log (DL) problem is a follows:

1. Input g , a, p. With 1 ≤ g , a ≤ p − 1. g is a gen for Z∗
p.

2. Output x such that g x ≡ a (mod p).

Recall

I A good alg would be time (log p)O(1).

I A bad alg would be time pO(1).

I If an algorithm is in time (say) p1/10 still not efficient but will
force Alice and Bob to up their game.
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The Complexity of Discrete Log?

Input is (g , a, p).

1. Naive algorithm is O(p) time.

2. Exists an O(
√
p) time, O(

√
p) space alg. Time and Space

makes it NOT practical.

3. Exists an O(
√
p) time, (log p)O(1) space alg. Space fine, but

time still a problem.

4. Not much progress on theory front since 1985.

5. Discrete Log is in QuantumP.

Good Candidate for a hard problem for Eve.
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Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem:
Given a ∈ {1, . . . , p}, find x such that g x ≡ a (mod p). We call
this DLp,g (a).

1. If g is small then DL(ga) might be easy: DL1009,7(49) = 2
since 72 ≡ 49 (mod 1009).

2. If g is small then DL(p − ga) might be easy:
DL1009,7(1009− 49) = 506 since 750472 ≡ −72 ≡ 1009− 49
(mod 1009).

3. If g , a ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

4. Tradeoff: By restricting a we are cutting down search space
for Eve. Even so, in this case we need to since she REALLY
can recognize when DL is easy.
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Consider What We Already Have Here

I Exponentiation mod p is Easy.

I Discrete Log is thought to be Hard.

We want a crypto system where:

I Alice and Bob do Exponentiation mod p to encrypt and
decrypt.

I Eve has to do Discrete Log to crack it.

Do we have this?

No. But we’ll come close.
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Convention

For the rest of the slides on Diffie-Hellman Key Exchange there
will always be a prime p that we are considering.

ALL math done from that point on is mod p.

ALL numbers are in {1, . . . , p − 1}.



Finding Generators



Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

I g generates Z∗
p.

I g ∈ {p3 , . . . ,
2p
3 }. (We ignore floors and ceilings for notational

convenience.)

We could test p
3 , then p

3 + 1, etc. Will we hit a generator soon?

How many elts of {1, . . . ,p− 1} are gens? Θ( p
log log p )

Hence if you just look for a gen you will find one soon.
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Finding Gens: Useful Theorem

Theorem: If g is not a generator then there exists x that

1. x divides p − 1, x 6= 1, x 6= −1.

2. g x ≡ 1.

So want to use a prime p such that p − 1 is easy to factor.
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Finding Gens: Final Attempt

Given prime p, find a gen for Z∗
p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!



Finding Gens: Final Attempt

Given prime p, find a gen for Z∗
p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!



Finding Gens: Final Attempt

Given prime p, find a gen for Z∗
p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!



Finding Gens: Final Attempt

Given prime p, find a gen for Z∗
p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!



Finding Gens: Final Attempt

Given prime p, find a gen for Z∗
p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.

CON: Need both p and p−1
2 are primes.

CAVEAT We need to pick certain kinds of primes. Can do that!



Finding Gens: Final Attempt

Given prime p, find a gen for Z∗
p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.

CAVEAT We need to pick certain kinds of primes. Can do that!



Finding Gens: Final Attempt

Given prime p, find a gen for Z∗
p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!



Primality Testing



RECAP

We seek a protocol where Alice and Bob do easy computations and
Eve has to do a hard one in order to crack the code.

1. Exponentiation mod p is easy.

2. Discrete Log is hard.

3. In order for Discrete Log to be used we need a prime p and a
generator g .

4. If p is a safe prime then it is easy to find a generator.

5. Goal One Primality Testing. Can easily use this to test if a
number is a prime and also if a number is a safe prime.

6. Goal Two Finding a Safe Prime: Given L we will want to
quickly generate a safe prime of bit-length L.
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A Primality Testing Algorithm

Prior Slides If p is prime and a ∈ N then ap ≡ a (mod p).

What has been observed If p is not prime then usually for most
a, ap 6≡ a (mod p).
Primality Algorithm

1. Input p. (In algorithm all arithmetic is mod p.)

2. Form rand R ⊆ {2, . . . , p − 1} of size ∼ lg p.

3. For each a ∈ R compute ap.

3.1 If ever get ap 6≡ a then p not prime(we are sure).
3.2 If for all a, ap ≡ a then PRIME (we are not sure).

Two reasons for our uncertainty:

I p is composite but we were unlucky with R.

I There are some composite p such that for all a, ap ≡ a.
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I p is composite but we were unlucky with R.

I There are some composite p such that for all a, ap ≡ a.



Primality Testing – What is Really True

1. Exists algorithm that only has first problem, possible bad luck.

2. That algorithm has prob of failure ≤ 1
2p . Good enough!

3. Exists deterministic poly time algorithm but is much slower.

4. n is a Carmichael Number if it is composite and, for all a,
an ≡ a. These are the numbers my algorithm FAILS on. The
first few are

561, 1105, 1729, 2465, 2821, 6601, 8911.
There are an infinite number of Carmichael numbers, but they
are rare.
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I We just gave a fast algorithm for testing if p is prime.

I We want to generate primes.

New Problem Given L, return an L-bit prime.
Clarification An L-bit prime has a 1 as left most bit.
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Alg for Generating Primes

Given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.
CAVEAT Can make sure never test even numbers. Won’t do that
in review.



Alg for Generating Primes

Given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.
CAVEAT Can make sure never test even numbers. Won’t do that
in review.



Alg for Generating Primes

Given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.
CAVEAT Can make sure never test even numbers. Won’t do that
in review.



Alg for Generating Primes

Given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.
CAVEAT Can make sure never test even numbers. Won’t do that
in review.



Alg for Generating Primes

Given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.
CAVEAT Can make sure never test even numbers. Won’t do that
in review.



Alg for Generating Primes

Given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.
CAVEAT Can make sure never test even numbers. Won’t do that
in review.



Alg for Generating Primes

Given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?

PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.
CAVEAT Can make sure never test even numbers. Won’t do that
in review.



Alg for Generating Primes

Given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.

CON Tests lots of numbers that are obv not prime—e.g, evens.
CAVEAT Can make sure never test even numbers. Won’t do that
in review.



Alg for Generating Primes

Given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.

CAVEAT Can make sure never test even numbers. Won’t do that
in review.



Alg for Generating Primes

Given L, generating a prime of length L.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (so x is a L-bit number).

4. Test if x is prime.

5. If x is prime then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns a prime ∼ 3L2 tries with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.
CAVEAT Can make sure never test even numbers. Won’t do that
in review.



Generating Safe Primes

Definition p is a safe prime if p is prime and p−1
2 is prime.

1. Input(L).

2. Pick y ∈ {0, 1}L−1 at rand.

3. x = 1y (note that x is a L-bit number).

4. Test if x and x−1
2 are prime.

5. If they both are then output x and stop, else goto step 2.

Is this a good algorithm?
PRO Math: returns prime quickly with high prob.
CON Tests lots of numbers that are obv not prime—e.g, evens.
CAVEAT Can make sure never test evens. Won’t do that in this
rev.
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