BILL RECORDED LECTURE

Establishing a Shared Secret Key Using Cards

Motivation and Credit

Motivation This is a toy version of how bridge players may communicate information.

Motivation and Credit

Motivation This is a toy version of how bridge players may communicate information.

Credit I will discuss work by many authors: Fisher, Koizumi, Paterson Mizuki, Nishizeki, Rackoff, Shizuya, Wright.

Motivation and Credit

Motivation This is a toy version of how bridge players may communicate information.

Credit I will discuss work by many authors: Fisher, Koizumi, Paterson Mizuki, Nishizeki, Rackoff, Shizuya, Wright.

I have a website of some of the papers in the area:
http://www.cs.umd.edu/~gasarch/TOPICS/sscards/ sscards.html.

Scenario

Scenario

1. There is a deck of 6 cards, labeled $\{1,2,3,4,5,6\}$.

Scenario

1. There is a deck of 6 cards, labeled $\{1,2,3,4,5,6\}$.
2. Alice (A), Bob (B), Eve (E) are at a card table.

Scenario

1. There is a deck of 6 cards, labeled $\{1,2,3,4,5,6\}$.
2. Alice (A), Bob (B), Eve (E) are at a card table.
3. A gets 2 cards, B gets 2 cards, E gets 2 cards. This is random.

Scenario

1. There is a deck of 6 cards, labeled $\{1,2,3,4,5,6\}$.
2. Alice (A), Bob (B), Eve (E) are at a card table.
3. A gets 2 cards, B gets 2 cards, E gets 2 cards. This is random.
4. A and B want to talk out loud and manage to establish a shared secret bit.

Scenario

1. There is a deck of 6 cards, labeled $\{1,2,3,4,5,6\}$.
2. Alice (A), Bob (B), Eve (E) are at a card table.
3. A gets 2 cards, B gets 2 cards, E gets 2 cards. This is random.
4. A and B want to talk out loud and manage to establish a shared secret bit.
5. The bit will be information-theoretically secure from E. Even if E had unlimited computing power she cannot determine the bit or even a statement like $\operatorname{Prob}(\mathrm{b}=0) \geq 0.51$.

The High-Low Convention (HL)

Assume there are two cards x, y such that:

The High-Low Convention (HL)

Assume there are two cards x, y such that:

- A has x and $A \& B$ both know that.

The High-Low Convention (HL)

Assume there are two cards x, y such that:

- A has x and $A \& B$ both know that.
- B has y and $A \& B$ both know that.

The High-Low Convention (HL)

Assume there are two cards x, y such that:

- A has x and A \& B both know that.
- B has y and $A \& B$ both know that.
- E knows that one of them has x and one of them has y but has no info on which is which.

The High-Low Convention (HL)

Assume there are two cards x, y such that:

- A has x and $A \& B$ both know that.
- B has y and $A \& B$ both know that.
- E knows that one of them has x and one of them has y but has no info on which is which.
- If $x<y$ then $A \& B$ will set secret bit is 0 .

The High-Low Convention (HL)

Assume there are two cards x, y such that:

- A has x and $A \& B$ both know that.
- B has y and $A \& B$ both know that.
- E knows that one of them has x and one of them has y but has no info on which is which.
- If $x<y$ then $A \& B$ will set secret bit is 0 .
- If $x>y$ then $A \& B$ will set secret bit is 1 .

The High-Low Convention (HL)

Assume there are two cards x, y such that:

- A has x and $A \& B$ both know that.
- B has y and $A \& B$ both know that.
- E knows that one of them has x and one of them has y but has no info on which is which.
- If $x<y$ then $A \& B$ will set secret bit is 0 .
- If $x>y$ then $A \& B$ will set secret bit is 1 .
- Note that the bit is info-theoretic secure from E .

The High-Low Convention (HL)

Assume there are two cards x, y such that:

- A has x and $A \& B$ both know that.
- B has y and $A \& B$ both know that.
- E knows that one of them has x and one of them has y but has no info on which is which.
- If $x<y$ then $A \& B$ will set secret bit is 0 .
- If $x>y$ then $\mathrm{A} \& \mathrm{~B}$ will set secret bit is 1 .
- Note that the bit is info-theoretic secure from E.

Called The High-Low Convention or just HL.

First Attempt: Example One

First Attempt: Example One

$$
\text { 1. } A:\{1,2\}, B:\{3,4\}, E:\{5,6\} .
$$

First Attempt: Example One

1. $A:\{1,2\}, B:\{3,4\}, E:\{5,6\}$.
2. A picks a random card in her hand and a random card NOT in her hand, say $\{1,3\}$. A yells I have $\mathbf{1 \vee 3}$.

First Attempt: Example One

1. $A:\{1,2\}, B:\{3,4\}, E:\{5,6\}$.
2. A picks a random card in her hand and a random card NOT in her hand, say $\{1,3\}$. A yells \mathbf{I} have $\mathbf{1 \vee 3}$.
3. B says I have $\mathbf{1} \vee \mathbf{3}$ (he does!).

First Attempt: Example One

1. $A:\{1,2\}, B:\{3,4\}, E:\{5,6\}$.
2. A picks a random card in her hand and a random card NOT in her hand, say $\{1,3\}$. A yells \mathbf{I} have $\mathbf{1 \vee 3}$.
3. B says I have $\mathbf{1} \vee \mathbf{3}$ (he does!).
4. $A \& B$ use $H L$ and know shared bit is 0 .

First Attempt: Example One

1. $A:\{1,2\}, B:\{3,4\}, E:\{5,6\}$.
2. A picks a random card in her hand and a random card NOT in her hand, say $\{1,3\}$. A yells I have $\mathbf{1 \vee 3}$.
3. B says I have $\mathbf{1} \vee \mathbf{3}$ (he does!).
4. $A \& B$ use $H L$ and know shared bit is 0 .

Security E has no clue whatsoever which of A and B has the 1 and which of A and B has the 3 . So the shared secret bit is info-theoretically secure.

First Attempt: Example One

1. $A:\{1,2\}, B:\{3,4\}, E:\{5,6\}$.
2. A picks a random card in her hand and a random card NOT in her hand, say $\{1,3\}$. A yells I have $1 \vee 3$.
3. B says I have $\mathbf{1} \vee \mathbf{3}$ (he does!).
4. $A \& B$ use $H L$ and know shared bit is 0 .

Security E has no clue whatsoever which of A and B has the 1 and which of A and B has the 3 . So the shared secret bit is info-theoretically secure.
What can go wrong? Discuss.

First Attempt: Example One

1. $A:\{1,2\}, B:\{3,4\}, E:\{5,6\}$.
2. A picks a random card in her hand and a random card NOT in her hand, say $\{1,3\}$. A yells I have $1 \vee 3$.
3. B says I have $\mathbf{1} \vee \mathbf{3}$ (he does!).
4. $A \& B$ use $H L$ and know shared bit is 0 .

Security E has no clue whatsoever which of A and B has the 1 and which of A and B has the 3 . So the shared secret bit is info-theoretically secure.
What can go wrong? Discuss.
What if B does not have one of the cards A said?

First Attempt: Example Two

What if B does not have one of the cards A said?

First Attempt: Example Two

What if B does not have one of the cards A said?

1. $A:\{1,2\}, B:\{3,4\}, E:\{5,6\}$.

First Attempt: Example Two

What if B does not have one of the cards A said?

1. $A:\{1,2\}, B:\{3,4\}, E:\{5,6\}$.
2. A picks a random card in her hand and a random card NOT in her hand, say $\{1,5\}$. A yells I have $\mathbf{1} \vee 5$.

First Attempt: Example Two

What if B does not have one of the cards A said?

1. $A:\{1,2\}, B:\{3,4\}, E:\{5,6\}$.
2. A picks a random card in her hand and a random card NOT in her hand, say $\{1,5\}$. A yells I have $\mathbf{1} \vee 5$.
3. B says I do not (he doesn't!)

First Attempt: Example Two

What if B does not have one of the cards A said?

1. $A:\{1,2\}, B:\{3,4\}, E:\{5,6\}$.
2. A picks a random card in her hand and a random card NOT in her hand, say $\{1,5\}$. A yells I have $\mathbf{1} \vee 5$.
3. B says I do not (he doesn't!)
4. A says I have 1, E has 5. A and E toss out known card.

First Attempt: Example Two

What if B does not have one of the cards A said?

1. $A:\{1,2\}, B:\{3,4\}, E:\{5,6\}$.
2. A picks a random card in her hand and a random card NOT in her hand, say $\{1,5\}$. A yells I have $\mathbf{1 \vee 5}$.
3. B says I do not (he doesn't!)
4. A says I have 1, E has 5. A and E toss out known card.
5. They now have the scenario:
$A:\{2\}, B:\{3,4\}, E:\{6\}$.

First Attempt: Example Two

What if B does not have one of the cards A said?

1. $A:\{1,2\}, B:\{3,4\}, E:\{5,6\}$.
2. A picks a random card in her hand and a random card NOT in her hand, say $\{1,5\}$. A yells I have $\mathbf{1 \vee 5}$.
3. B says I do not (he doesn't!)
4. A says I have 1, E has 5. A and E toss out known card.
5. They now have the scenario: $A:\{2\}, B:\{3,4\}, E:\{6\}$.
Now what? Next page.

First Attempt: Example Two. Cont.

What if B does not have one of the cards A said?

First Attempt: Example Two. Cont.

What if B does not have one of the cards A said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.

First Attempt: Example Two. Cont.

What if B does not have one of the cards A said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.
2. B picks a random card in his hand and a random card NOT in his hand, say $\{2,3\}$. B yells I have $2 \vee 3$.

First Attempt: Example Two. Cont.

What if B does not have one of the cards A said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.
2. B picks a random card in his hand and a random card NOT in his hand, say $\{2,3\}$. B yells I have $2 \vee 3$.
3. A says I have $2 \vee 3$ (she does!).

First Attempt: Example Two. Cont.

What if B does not have one of the cards A said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.
2. B picks a random card in his hand and a random card NOT in his hand, say $\{2,3\}$. B yells I have $2 \vee 3$.
3. A says I have $2 \vee 3$ (she does!).
4. $A \& B$ use $H L$ to share a secret bit.

First Attempt: Example Two. Cont.

What if B does not have one of the cards A said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.
2. B picks a random card in his hand and a random card NOT in his hand, say $\{2,3\}$. B yells I have $2 \vee 3$.
3. A says I have $2 \vee 3$ (she does!).
4. $A \& B$ use $H L$ to share a secret bit.

What can go wrong? Discuss.

First Attempt: Example Two. Cont.

What if B does not have one of the cards A said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.
2. B picks a random card in his hand and a random card NOT in his hand, say $\{2,3\}$. B yells I have $2 \vee 3$.
3. A says I have $2 \vee 3$ (she does!).
4. $A \& B$ use $H L$ to share a secret bit.

What can go wrong? Discuss.
What if A does not have one of the cards B said?

First Attempt: Example Two. Cont.

What if A does not have one of the cards B said?

First Attempt: Example Two. Cont.

What if A does not have one of the cards B said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.

First Attempt: Example Two. Cont.

What if A does not have one of the cards B said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.
2. B picks a random card in his hand and a random card NOT in his hand, say $\{3,6\}$. B yells I have $3 \vee 6$.

First Attempt: Example Two. Cont.

What if A does not have one of the cards B said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.
2. B picks a random card in his hand and a random card NOT in his hand, say $\{3,6\}$. B yells I have $3 \vee 6$.
3. A says I do not.

First Attempt: Example Two. Cont.

What if A does not have one of the cards B said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.
2. B picks a random card in his hand and a random card NOT in his hand, say $\{3,6\}$. B yells I have $3 \vee 6$.
3. A says I do not.
4. B yells I have 3, E has $\mathbf{6}$.

First Attempt: Example Two. Cont.

What if A does not have one of the cards B said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.
2. B picks a random card in his hand and a random card NOT in his hand, say $\{3,6\}$. B yells I have $3 \vee 6$.
3. A says I do not.
4. B yells I have $\mathbf{3}, \mathbf{E}$ has $\mathbf{6}$.

Now we have
$A:\{2\}, B:\{4\}, E:\{ \}$.

First Attempt: Example Two. Cont.

What if A does not have one of the cards B said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.
2. B picks a random card in his hand and a random card NOT in his hand, say $\{3,6\}$. B yells I have $3 \vee 6$.
3. A says I do not.
4. B yells I have 3, E has 6 .

Now we have $A:\{2\}, B:\{4\}, E:\{ \}$.
$A \& B$ can do HL to establish shared secret bit.

First Attempt: Example Two. Cont.

What if A does not have one of the cards B said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.
2. B picks a random card in his hand and a random card NOT in his hand, say $\{3,6\}$. B yells I have $3 \vee 6$.
3. A says I do not.
4. B yells I have 3, E has 6 .

Now we have $A:\{2\}, B:\{4\}, E:\{ \}$.
A \& B can do HL to establish shared secret bit.
What can go wrong? Discuss.

First Attempt: Example Two. Cont.

What if A does not have one of the cards B said?

1. $A:\{2\}, B:\{3,4\}, E:\{6\}$.
2. B picks a random card in his hand and a random card NOT in his hand, say $\{3,6\}$. B yells I have $3 \vee 6$.
3. A says I do not.
4. B yells I have 3, E has 6 .

Now we have $A:\{2\}, B:\{4\}, E:\{ \}$.
A \& B can do HL to establish shared secret bit.
What can go wrong? Discuss.
Next Page.

First Attempt: What Goes Wrong

I used the phrase First Attempt which is a sure giveaway that it does not work.

First Attempt: What Goes Wrong

I used the phrase First Attempt which is a sure giveaway that it does not work.

So what can go wrong?

First Attempt: What Goes Wrong

I used the phrase First Attempt which is a sure giveaway that it does not work.

So what can go wrong?
Nothing! I used the phrase First Attempt to see if you would jump to the wrong conclusion.

Generalize：The $(2,2,2)$ Protocol

Generalize: The $(2,2,2)$ Protocol

1. A has 1 or 2 cards, B has 1 or 2 cards, E has 1 or 2 cards.

Generalize: The $(2,2,2)$ Protocol

1. A has 1 or 2 cards, B has 1 or 2 cards, E has 1 or 2 cards.
2. Assume A has 2 cards (B-case similar).

Generalize: The $(2,2,2)$ Protocol

1. A has 1 or 2 cards, B has 1 or 2 cards, E has 1 or 2 cards.
2. Assume A has 2 cards (B-case similar). A picks a random card from her hand and a random card NOT in her hand, pair is $\{x, y\}$. A yells $\boldsymbol{x} \vee \boldsymbol{y}$.

Generalize: The $(2,2,2)$ Protocol

1. A has 1 or 2 cards, B has 1 or 2 cards, E has 1 or 2 cards.
2. Assume A has 2 cards (B-case similar).

A picks a random card from her hand and a random card NOT in her hand, pair is $\{x, y\}$. A yells $\boldsymbol{x} \vee \boldsymbol{y}$.
3. If B has one of x, y he yells $\boldsymbol{x} \vee \boldsymbol{y}$ and they do HL.

Generalize: The $(2,2,2)$ Protocol

1. A has 1 or 2 cards, B has 1 or 2 cards, E has 1 or 2 cards.
2. Assume A has 2 cards (B-case similar). A picks a random card from her hand and a random card NOT in her hand, pair is $\{x, y\}$. A yells $\boldsymbol{x} \vee \boldsymbol{y}$.
3. If B has one of x, y he yells $\boldsymbol{x} \vee \boldsymbol{y}$ and they do HL.
4. If B does not, he yells I don't. Then A yells $\mathbf{A}: x, \mathrm{E}: y$. Remove x from A and y from E. If E is \emptyset then A and B can do HL. If E is not \emptyset then recurse.

All Possible Outcomes

If start with (a, b, e) with $a \geq b$ then after A speaks and B responds either you have

All Possible Outcomes

If start with (a, b, e) with $a \geq b$ then after A speaks and B responds either you have

1. One bit is shared and scenario is $(a-1, b-1, e)$. We denote this $(a-1, b-1, e)-1$.

All Possible Outcomes

If start with (a, b, e) with $a \geq b$ then after A speaks and B responds either you have

1. One bit is shared and scenario is $(a-1, b-1, e)$. We denote this $(a-1, b-1, e)-1$.
2. Zero bits are shared shared and scenario is ($a-1, b, e-1$).

Similar for $a<b$.

All Possible Outcomes

If start with (a, b, e) with $a \geq b$ then after A speaks and B responds either you have

1. One bit is shared and scenario is $(a-1, b-1, e)$. We denote this $(a-1, b-1, e)-1$.
2. Zero bits are shared shared and scenario is ($a-1, b, e-1$).

Similar for $a<b$.
All possible paths:

All Possible Outcomes

If start with (a, b, e) with $a \geq b$ then after A speaks and B responds either you have

1. One bit is shared and scenario is $(a-1, b-1, e)$. We denote this $(a-1, b-1, e)-1$.
2. Zero bits are shared shared and scenario is ($a-1, b, e-1$).

Similar for $a<b$.
All possible paths:
$(2,2,2) \Rightarrow(1,1,2)-1$.

All Possible Outcomes

If start with (a, b, e) with $a \geq b$ then after A speaks and B responds either you have

1. One bit is shared and scenario is $(a-1, b-1, e)$. We denote this $(a-1, b-1, e)-1$.
2. Zero bits are shared shared and scenario is ($a-1, b, e-1$).

Similar for $a<b$.
All possible paths:
$(2,2,2) \Rightarrow(1,1,2)-1$.
$(2,2,2) \Rightarrow(1,2,1) \Rightarrow(0,1,1)-1$.

All Possible Outcomes

If start with (a, b, e) with $a \geq b$ then after A speaks and B responds either you have

1. One bit is shared and scenario is $(a-1, b-1, e)$. We denote this $(a-1, b-1, e)-1$.
2. Zero bits are shared shared and scenario is ($a-1, b, e-1$).

Similar for $a<b$.
All possible paths:
$(2,2,2) \Rightarrow(1,1,2)-1$.
$(2,2,2) \Rightarrow(1,2,1) \Rightarrow(0,1,1)-1$.
$(2,2,2) \Rightarrow(1,2,1) \Rightarrow(1,1,0) \Rightarrow \mathrm{HL}-1$.

Can A \& B share a secret bit if start with $(2,1,2) ?$

We look at all possible paths:

Can A \& B share a secret bit if start with $(2,1,2)$?

We look at all possible paths:
$(2,1,2) \Rightarrow(1,0,2)-1$.

Can A \& B share a secret bit if start with $(2,1,2)$?

We look at all possible paths:
$(2,1,2) \Rightarrow(1,0,2)-1$.
$(2,1,2) \Rightarrow(1,1,1) \Rightarrow(0,0,1)-1$.

Can $A \& B$ share a secret bit if start with $(2,1,2) ?$

We look at all possible paths:
$(2,1,2) \Rightarrow(1,0,2)-1$.
$(2,1,2) \Rightarrow(1,1,1) \Rightarrow(0,0,1)-1$.
$(2,1,2) \Rightarrow(1,1,1) \Rightarrow(0,1,0)$. STUCK!!

Can $A \& B$ share a secret bit if start with $(2,1,2) ?$

We look at all possible paths:
$(2,1,2) \Rightarrow(1,0,2)-1$.
$(2,1,2) \Rightarrow(1,1,1) \Rightarrow(0,0,1)-1$.
$(2,1,2) \Rightarrow(1,1,1) \Rightarrow(0,1,0)$. STUCK!!
Note We only showed that our approach does not work.

Can A \& B share a secret bit if start with $(2,1,2) ?$

We look at all possible paths:
$(2,1,2) \Rightarrow(1,0,2)-1$.
$(2,1,2) \Rightarrow(1,1,1) \Rightarrow(0,0,1)-1$.
$(2,1,2) \Rightarrow(1,1,1) \Rightarrow(0,1,0)$. STUCK!!
Note We only showed that our approach does not work.
It is known that no protocol works when starting with $(2,1,2)$.

We Generalize to More Bits

For which a, b, e can (a, b, e) always lead to 2 bits? 3 bits?

We Generalize to More Bits

For which a, b, e can (a, b, e) always lead to 2 bits? 3 bits?
We consider the case of 2 bits.

When Can A \& B Get 2 Bits?

When Can A \& B Get 2 Bits?

Lets start with
$(3,3,2)$.
Possible outcomes:
$(3,3,2) \Rightarrow(2,2,2)-1$. From here can get 1 more bit.

When Can A \& B Get 2 Bits?

Lets start with
$(3,3,2)$.
Possible outcomes:
$(3,3,2) \Rightarrow(2,2,2)-1$. From here can get 1 more bit.
$(3,3,2) \Rightarrow(2,3,1) \Rightarrow(2,2,0)$.

When Can A \& B Get 2 Bits?

Lets start with
$(3,3,2)$.
Possible outcomes:
$(3,3,2) \Rightarrow(2,2,2)-1$. From here can get 1 more bit.
$(3,3,2) \Rightarrow(2,3,1) \Rightarrow(2,2,0)$.
This is new! From $(2,2,0)$ how do $A \& B$ get any bits?

When Can A \& B Get 2 Bits?

Lets start with
$(3,3,2)$.
Possible outcomes:
$(3,3,2) \Rightarrow(2,2,2)-1$. From here can get 1 more bit.
$(3,3,2) \Rightarrow(2,3,1) \Rightarrow(2,2,0)$.
This is new! From $(2,2,0)$ how do A \& B get any bits?
Next slide.

Example

$A:\{1,2\}, B:\{3,4\}, E: \emptyset$.

Example

$A:\{1,2\}, B:\{3,4\}, E: \emptyset$.
E knows that A has two from $\{1,2,3,4\}$ and that B has the other two. That is all E knows.

Example

$A:\{1,2\}, B:\{3,4\}, E: \emptyset$.
E knows that A has two from $\{1,2,3,4\}$ and that B has the other two. That is all E knows.
$A \& B$ know each others hands.

Example

$A:\{1,2\}, B:\{3,4\}, E: \emptyset$.
E knows that A has two from $\{1,2,3,4\}$ and that B has the other two. That is all E knows.
$A \& B$ know each others hands.
A picks 3 elements from $\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$. and orders them. Say $\{2,4\},\{1,4\},\{2,3\}$.

Example

$A:\{1,2\}, B:\{3,4\}, E: \emptyset$.
E knows that A has two from $\{1,2,3,4\}$ and that B has the other two. That is all E knows.
$A \& B$ know each others hands.
A picks 3 elements from $\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$. and orders them. Say $\{2,4\},\{1,4\},\{2,3\}$.

A picks one of $00,01,10,11$ at random, say 10 (3).

Example

$A:\{1,2\}, B:\{3,4\}, E: \emptyset$.
E knows that A has two from $\{1,2,3,4\}$ and that B has the other two. That is all E knows.
$A \& B$ know each others hands.
A picks 3 elements from $\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$. and orders them. Say $\{2,4\},\{1,4\},\{2,3\}$.

A picks one of $00,01,10,11$ at random, say 10 (3).
A yells $\{2,4\},\{1,4\},\{1,2\},\{2,3\}$.

Example

$A:\{1,2\}, B:\{3,4\}, E: \emptyset$.
E knows that A has two from $\{1,2,3,4\}$ and that B has the other two. That is all E knows.
$A \& B$ know each others hands.
A picks 3 elements from $\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$. and orders them. Say $\{2,4\},\{1,4\},\{2,3\}$.

A picks one of $00,01,10,11$ at random, say 10 (3).
A yells $\{2,4\},\{1,4\},\{1,2\},\{2,3\}$.
B knows that A has $\{1,2\}$ so the 2-bits are 10 .

Example

$A:\{1,2\}, B:\{3,4\}, E: \emptyset$.
E knows that A has two from $\{1,2,3,4\}$ and that B has the other two. That is all E knows.
$A \& B$ know each others hands.
A picks 3 elements from $\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$. and orders them. Say $\{2,4\},\{1,4\},\{2,3\}$.

A picks one of $00,01,10,11$ at random, say 10 (3).
A yells $\{2,4\},\{1,4\},\{1,2\},\{2,3\}$.
B knows that A has $\{1,2\}$ so the 2-bits are 10 .
E has no way of knowing what A has, so learns nothing.

We will do $(a, b, 0)$ But First \ldots

We will describe what A and B do if

We will do $(a, b, 0)$ But First \ldots

We will describe what A and B do if
A has a cards

We will do $(a, b, 0)$ But First \ldots

We will describe what A and B do if
A has a cards
B has b cards

We will do $(a, b, 0)$ But First \ldots

We will describe what A and B do if
A has a cards
B has b cards
E has 0 cards.

We will do $(a, b, 0)$ But First \ldots

We will describe what A and B do if
A has a cards
B has b cards
E has 0 cards.
But first need some notation and conventions.

We will do $(a, b, 0)$ But First \ldots

We will describe what A and B do if
A has a cards
B has b cards
E has 0 cards.
But first need some notation and conventions.
They are on the next few slides.

Boring Notation

If $x \in \mathbb{N}$ then

$$
[x]=\{1, \ldots, x\}
$$

Boring Notation

If $x \in \mathbb{N}$ then

$$
[x]=\{1, \ldots, x\} .
$$

This will help save space and is standard.

Interesting Notation

For this slide X is a set.

Interesting Notation

For this slide X is a set.
Recall The powerset of X has $2^{|X|}$ elements.

Interesting Notation

For this slide X is a set.
Recall The powerset of X has $2^{|X|}$ elements.
Notation Denote the powerset of X as 2^{X}.

Interesting Notation

For this slide X is a set.
Recall The powerset of X has $2^{|X|}$ elements.
Notation Denote the powerset of X as 2^{X}.
Vote: Have you seen that notation before?

Interesting Notation

For this slide X is a set.
Recall The powerset of X has $2^{|X|}$ elements.
Notation Denote the powerset of X as 2^{X}.
Vote: Have you seen that notation before? Vote: Do you like it?

Interesting Notation

For this slide X is a set.
Recall The powerset of X has $2^{|X|}$ elements.
Notation Denote the powerset of X as 2^{X}.
Vote: Have you seen that notation before? Vote: Do you like it?
Recall The number of \boldsymbol{k}-element subsets of \boldsymbol{X} is $\binom{|X|}{k}$.

Interesting Notation

For this slide X is a set.
Recall The powerset of X has $2^{|X|}$ elements.
Notation Denote the powerset of X as 2^{X}.
Vote: Have you seen that notation before? Vote: Do you like it?
Recall The number of \boldsymbol{k}-element subsets of \boldsymbol{X} is $\binom{|X|}{k}$.
Notation Denote the set of \boldsymbol{k}-element subsets of \boldsymbol{X} by $\binom{X}{k}$.

Interesting Notation

For this slide X is a set.
Recall The powerset of X has $2^{|X|}$ elements.
Notation Denote the powerset of X as 2^{X}.
Vote: Have you seen that notation before? Vote: Do you like it?
Recall The number of \boldsymbol{k}-element subsets of \boldsymbol{X} is $\binom{|X|}{k}$.
Notation Denote the set of \boldsymbol{k}-element subsets of \boldsymbol{X} by $\binom{X}{k}$.
Vote: Have you seen that notation before?

Interesting Notation

For this slide X is a set.
Recall The powerset of X has $2^{|X|}$ elements.
Notation Denote the powerset of X as 2^{X}.
Vote: Have you seen that notation before? Vote: Do you like it?
Recall The number of \boldsymbol{k}-element subsets of \boldsymbol{X} is $\binom{|X|}{k}$.
Notation Denote the set of \boldsymbol{k}-element subsets of \boldsymbol{X} by $\binom{X}{k}$.
Vote: Have you seen that notation before? Vote: Do you like it?

Convention

If I say
A picks 3 elts from X

Convention

If I say

A picks 3 elts from X

It means
A picks 3 elements from X at Random

General: $(a, b, 0)$

A has a cards, B has b cards, E has 0 cards. A's set of cards is ACARDS. Let n be largest number such that $2^{n} \leq\binom{ a+b}{a}$.

General: $(a, b, 0)$

A has a cards, B has b cards, E has 0 cards. A's set of cards is ACARDS. Let n be largest number such that $2^{n} \leq\binom{ a+b}{a}$.

1. A and B know each others cards.

General: $(a, b, 0)$

A has a cards, B has b cards, E has 0 cards. A's set of cards is ACARDS. Let n be largest number such that $2^{n} \leq\binom{ a+b}{a}$.

1. A and B know each others cards.
2. A picks $2^{n}-1$ elts of $\binom{[a+b]}{a}$, orders them: $Y_{1}, \ldots, Y_{2^{n}-1}$.

General: $(a, b, 0)$

A has a cards, B has b cards, E has 0 cards. A's set of cards is ACARDS. Let n be largest number such that $2^{n} \leq\binom{ a+b}{a}$.

1. A and B know each others cards.
2. A picks $2^{n}-1$ elts of $\binom{[a+b]}{a}$, orders them: $Y_{1}, \ldots, Y_{2^{n}-1}$.
3. A picks a number y between 0 and $2^{n}-1$.

General: $(a, b, 0)$

A has a cards, B has b cards, E has 0 cards. A's set of cards is ACARDS. Let n be largest number such that $2^{n} \leq\binom{ a+b}{a}$.

1. A and B know each others cards.
2. A picks $2^{n}-1$ elts of $\binom{[a+b]}{a}$, orders them: $Y_{1}, \ldots, Y_{2^{n}-1}$.
3. A picks a number y between 0 and $2^{n}-1$.
4. A puts ACARDS in the y th pos in the seq Y 's, and yells it. E.g., If $y=3$, A yells:

$$
Y_{1}, Y_{2}, \operatorname{ACARDS}, Y_{3}, \ldots, Y_{2^{n}-1}
$$

General: $(a, b, 0)$

A has a cards, B has b cards, E has 0 cards. A's set of cards is ACARDS. Let n be largest number such that $2^{n} \leq\binom{ a+b}{a}$.

1. A and B know each others cards.
2. A picks $2^{n}-1$ elts of $\binom{[a+b]}{a}$, orders them: $Y_{1}, \ldots, Y_{2^{n}-1}$.
3. A picks a number y between 0 and $2^{n}-1$.
4. A puts ACARDS in the y th pos in the seq Y^{\prime} 's, and yells it. E.g., If $y=3, A$ yells:

$$
Y_{1}, Y_{2}, \operatorname{ACARDS}, Y_{3}, \ldots, Y_{2^{n}-1}
$$

5. B knows that ACARDS is A's cards. He knows they are the y th element in the list. y is the secret shared bit sequence.

General: $(a, b, 0)$

A has a cards, B has b cards, E has 0 cards. A's set of cards is ACARDS. Let n be largest number such that $2^{n} \leq\binom{ a+b}{a}$.

1. A and B know each others cards.
2. A picks $2^{n}-1$ elts of $\binom{[a+b]}{a}$, orders them: $Y_{1}, \ldots, Y_{2^{n}-1}$.
3. A picks a number y between 0 and $2^{n}-1$.
4. A puts ACARDS in the y th pos in the seq Y 's, and yells it. E.g., If $y=3$, A yells:

$$
Y_{1}, Y_{2}, \operatorname{ACARDS}, Y_{3}, \ldots, Y_{2^{n}-1}
$$

5. B knows that ACARDS is A's cards. He knows they are the y th element in the list. y is the secret shared bit sequence.
Security E has no info on what ACARDS is.

How Many Bits?

Let n be largest number such that $2^{n} \leq\binom{ a+b}{a}$.

How Many Bits?

Let n be largest number such that $2^{n} \leq\binom{ a+b}{a}$.
The number of bits is n.

How Many Bits?

Let n be largest number such that $2^{n} \leq\binom{ a+b}{a}$.
The number of bits is n.
Is there a nice expression for n ? There is!

$$
\left\lfloor\lg \binom{a+b}{a}\right\rfloor .
$$

How Many Bits?

Let n be largest number such that $2^{n} \leq\binom{ a+b}{a}$.
The number of bits is n.
Is there a nice expression for n ? There is!

$$
\left\lfloor\lg \binom{a+b}{a}\right\rfloor .
$$

How many bits if $a=b=n$?

$$
\left\lfloor\lg \binom{2 n}{n}\right\rfloor \sim\left\lfloor\lg \left(\frac{2^{2 n}}{\sqrt{\pi n}}\right)\right\rfloor \sim 2 n-0.5 \lg n-O(1)
$$

(n, n, n)
A \& B want to share n secret bits.
(n, n, n)
A \& B want to share n secret bits.
Will (n, n, n) work?
(n, n, n)
A \& B want to share n secret bits.
Will (n, n, n) work?
In the best case you get

$$
(n, n, n) \Rightarrow(n-1, n-1, n)-1 \Rightarrow \cdots \Rightarrow(0,0, n)-n
$$

(n, n, n)
A \& B want to share n secret bits.
Will (n, n, n) work?
In the best case you get

$$
(n, n, n) \Rightarrow(n-1, n-1, n)-1 \Rightarrow \cdots \Rightarrow(0,0, n)-n
$$

In the worst case you get

(n, n, n)

A \& B want to share n secret bits.
Will (n, n, n) work?
In the best case you get

$$
(n, n, n) \Rightarrow(n-1, n-1, n)-1 \Rightarrow \cdots \Rightarrow(0,0, n)-n
$$

In the worst case you get

$$
(n, n, n) \Rightarrow(n-1, n, n-1) \Rightarrow(n-1, n-1, n-2) \cdots \Rightarrow\left(\frac{n}{2}, \frac{n}{2}, 0\right)
$$

Last slide: $n-0.5 \lg n-O(1)$ bits.

(n, n, n)

A \& B want to share n secret bits.
Will (n, n, n) work?
In the best case you get

$$
(n, n, n) \Rightarrow(n-1, n-1, n)-1 \Rightarrow \cdots \Rightarrow(0,0, n)-n
$$

In the worst case you get

$$
(n, n, n) \Rightarrow(n-1, n, n-1) \Rightarrow(n-1, n-1, n-2) \cdots \Rightarrow\left(\frac{n}{2}, \frac{n}{2}, 0\right)
$$

Last slide: $n-0.5 \lg n-O(1)$ bits.
For what m does (m, m, m) produce n bits? Discuss.

When does (m, m, m) Give n Bits?

We consider the case where m is even.

When does (m, m, m) Give n Bits?

We consider the case where m is even.

$$
(m, m, m) \Rightarrow \cdots \Rightarrow\left(\frac{m}{2}, \frac{m}{2}, 0\right)
$$

Get $m-0.5 \lg m$ bits.

When does (m, m, m) Give n Bits?

We consider the case where m is even.

$$
(m, m, m) \Rightarrow \cdots \Rightarrow\left(\frac{m}{2}, \frac{m}{2}, 0\right)
$$

Get $m-0.5 \lg m$ bits.
Take $m=n+0.5 \lg n+O(1)$

When does (m, m, m) Give n Bits?

We consider the case where m is even.

$$
(m, m, m) \Rightarrow \cdots \Rightarrow\left(\frac{m}{2}, \frac{m}{2}, 0\right)
$$

Get $m-0.5 \lg m$ bits.
Take $m=n+0.5 \lg n+O(1)$

$$
n+0.5 \lg n+O(1)-0.5 \lg (n+0.5 \lg n+O(1))
$$

When does (m, m, m) Give n Bits?

We consider the case where m is even.

$$
(m, m, m) \Rightarrow \cdots \Rightarrow\left(\frac{m}{2}, \frac{m}{2}, 0\right)
$$

Get $m-0.5 \lg m$ bits.
Take $m=n+0.5 \lg n+O(1)$

$$
\begin{aligned}
n & +0.5 \lg n+O(1)-0.5 \lg (n+0.5 \lg n+O(1)) \\
& =n+0.5 \lg n-0.5 \lg n+O(1)=n+O(1)
\end{aligned}
$$

