1 Deterministic Turing Machines

Turing machines are a model of computation. It is believed that anything that can be computed can be computed by a Turing Machine. The definition won’t look like much, and won’t be used much; however, it is good to have a rigorous definition to refer to.

Def 1.1 A *Turing Machine* is a tuple \((Q, \Sigma, \delta, s, h)\) where

- \(Q\) is a finite set of states. It has the states \(s, q_{\text{acc}}, q_{\text{rej}}\).
- \(\Sigma\) is a finite alphabet. It contains the symbol \#.
- \(\delta : Q - \{q_{\text{acc}}, q_{\text{rej}}\} \times \Sigma \rightarrow Q \times \Sigma \cup \{R, L\}\)
- \(s \in Q\) is the start state, \(q_{\text{acc}}\) is the accept state, \(q_{\text{rej}}\) is the reject state.

We use the following convention:

1. On input \(x \in \Sigma^*\), \(x = x_1 \cdots x_n\), the machine starts with tape

 \[
 \#x_1x_2\cdots x_n\#\#\#\# \cdots
 \]

 that is one way infinite.

2. The head is initially looking at the \(x_n\).

3. If \(\delta(q, \sigma) = (p, \tau)\) then the state changes from \(q\) to \(p\) and the symbol \(\sigma\) is overwritten with \(\tau\). The head does not move.

4. If \(\delta(q, \sigma) = (p, L)\) then the state changes from \(q\) to \(p\) and the head moves left one square. overwritten with \(\tau\). The head does not move. (Similar for \(\delta(q, \sigma) = (p, R)\).

5. If the machine is in state \(h\) then it is DONE.

6. If the machine halts in state \(q_{\text{acc}}\) then we say \(M\) ACCEPTS \(x\). If the machine halts in state \(q_{\text{rej}}\) then we say \(M\) REJECTS \(x\).

Important Note: We can code Turing machines into numbers in many ways. The important thing is that when we do this we can, given a number \(i\), extract out which Turing Machine it corresponds to (if it does not correspond to one then we just say its the machine that halts in one step on any input). Hence we can (and will) say things like
Let M_1, M_2, M_3, \ldots be a list of all Turing Machines.

Run $M_i(x)$. This is easy- given i, we can find M_i, — that is, find the code for it, and then run it on x.

Def 1.2 A set A is **DECIDABLE** if there is a Turing Machine M such that

$$x \in A \rightarrow M(x) \text{ACCEPTS}$$

$$x \notin A \rightarrow M(x) \text{REJECTS}$$

2 Nondeterministic Turing Machines

Def 2.1 A *Turing Machine* is a tuple $(Q, \Sigma, \delta, s, h)$ where

- Q is a finite set of states
- Σ is a finite alphabet. It contains the symbol #.
- $\delta : Q - \{q_{acc}, q_{rej}\} \times \Sigma \rightarrow 2^{Q \times \Sigma \cup \{R,L\}}$
- $s \in Q$ is the start state
- $h \in Q$ is the halt state.

So if the machine is in a configuration there are MANY choices of what it can do.

Def 2.2 Let M be a nondet TM. The set of x that M ACCEPTS is

$$\{x \mid \text{SOME choice of moves of the nondet machine leads to } q_{acc} \}.$$

(We do not define the notion of M computing a function. There are several ways to do this, but they will not be useful for us.)

We can define a MULTITAPE Turing Machine. We leave it to you to define formally. Note that each machine has a constant number of tapes.
3 Time and Space Classes

Def 3.1 Let $T(n)$ be a computable function (think of it as increasing). A is in $\text{DTIME}(T(n))$ if there is a MULTITAPE TM M that decides A and also, for all x, $M(x)$ halts in time $\leq T(|x|)$. Convention: By $\text{DTIME}(T(n))$ we really mean $\text{DTIME}(O(T(n)))$. They are actually equivalent by having your TM just take bigger steps.

Note that this is unfortunately machine dependent. It is possible that if we allow 2-tapes instead of one it would change how much you can do. We won’t have to deal with this much since we will usually define classes in terms of multi-tape machines, and we will allow some slack on the time bound, like: $\text{DTIME}(n^{O(1)})$.

It is known that a Multitape $\text{DTIME}(T(n))$ machine can be simulated by (1) a 1-tape $\text{DTIME}(T(n)^2)$ TM, and also (2) a 2-tape $\text{DTIME}(T(n) \log T(n))$ TM.

Def 3.2 Let $S(n)$ be a computable function (think of it as increasing). A is in $\text{DSPACE}(S(n))$ if there is a TM M that decides A and also, for all x, $M(x)$ only uses space $S(|x|)$. Convention: By $\text{DSPACE}(S(n))$ we really mean $\text{DSPACE}(O(S(n)))$. They are actually equivalent by having your TM just take bigger steps. Convention: When dealing with space classes we will have an input tape which is read-only and a separate worktape. When dealing with space-bounded TMs computing functions we will also have a write-only output tape.

It is known that a Multitape $\text{DSPACE}(S(n))$ machine can be simulated by a 1-tape $\text{DSPACE}(S(n))$ TM.

Def 3.3 Let $T(n)$ be a computable function (think of it as increasing). A is in $\text{NTIME}(T(n))$ if there is a Nondet TM M that decides A and also, for all x, $M(x)$, on any path, halts in time $\leq T(|x|)$. Convention: By $\text{NTIME}(T(n))$ we really mean $\text{NTIME}(O(T(n)))$. They are actually equivalent by having your TM just take bigger steps.

Def 3.4 Let $S(n)$ be a computable function (think of it as increasing). A is in $\text{NSPACE}(S(n))$ if there is a Nondet TM M that decides A and also, for all x, $M(x)$, on any path, only uses space $\leq S(|x|)$. Convention: By $\text{NSPACE}(S(n))$ we really mean $\text{NSPACE}(O(S(n)))$. They are actually equivalent by having your TM just take bigger steps.

Def 3.5 For all of the definitions below, 1-tape and multitape are equivalent. This is important in the proof of Cooks theorem and later in the proof that a particular lang is EXPSPACE complete and hence not in P.
1. \(P = DTIME(n^{O(1)}) \).
2. \(NP = NTIME(n^{O(1)}) \). This is equivalent of just using 1-tape TM’s. (This is equivalent to our quantifier definition.)
3. \(EXP = DTIME(2^{n^{O(1)}}) \).
4. \(NEXP = NTIME(2^{n^{O(1)}}) \).
5. \(L = DSPACE(O(\log n)) \).
6. \(NL = NSPACE(O(\log n)) \).
7. \(PSPACE = DSPACE(n^{O(1)}) \).
8. \(EXPSPACE = DSPACE(2^{n^{O(1)}}) \).
9. \(NEXPSPACE = NSPACE(2^{n^{O(1)}}) \).

4 Easy Relations Between Classes

The following theorem is trivial.

Theorem 4.1 Let \(T(n) \) and \(S(n) \) be computable functions (think of as increasing).

1. \(DTIME(T(n)) \subseteq NTIME(T(n)) \).
2. \(DSPACE(S(n)) \subseteq NSPACE(S(n)) \).
3. \(DTIME(T(n)) \subseteq DSPACE(T(n)) \).
4. \(NTIME(T(n)) \subseteq NSPACE(T(n)) \).

The following theorem is easy but not trivial.

Theorem 4.2 Let \(T(n) \) and \(S(n) \) be computable functions (think of as increasing).

1. \(NTIME(T(n)) \subseteq DTIME(2^{O(T(n))}) \). (Just simulate ALL possible paths.)
2. \(NTIME(T(n)) \subseteq DSPACE(O(T(n))) \). (Just simulate ALL possible paths—keep a counter for which path you are simulating.)
5 Sophisticated Relations Between Classes

The following theorem has two parts. They are on your HW.

Theorem 5.1 Let $T(n)$ and $S(n)$ be computable functions (think of as increasing). $\text{NSPACE}(S(n)) \subseteq \text{DSPACE}(O(S(n)^2))$

Proof: Let $A \in \text{NSPACE}(S(n))$ via TM M. Given x we want to determine if SOME path in $M(x)$ goes to an accept state.

We will assume M has 1 worktape. The modification for many tapes are easy.

A *configuration* (henceforth config) is a snapshot of the $S(n)$ squares of the worktape, the state, and where the head is. It does not include the input.

Note that we CANNOT write down all of possible configs. Even so, consider the following: There are $2^{O(S(n))}$ configurations. Consider them to be nodes of a graph (which we CANNOT write down). There is an edge from C to D if from C you can get, in one step to D. Since M is nondeterministic there may be more than one. Note that you have to know x as well as C and D to tell if there is an edge.

We can now restate the problem: Given a directed graph by being given a program E that will, given two nodes (a, b) can tell if (a, b) is an edge, and given two nodes s, t (in our case s is the start configuration and t is the accepting configuration which we can assume is unique) determine if there is a path from s to t. The graph has N nodes. (In our case $N = 2^{O(S(n))}$.) Do the problem in $O((\log N)^2)$ space).

We assume the graph is fixed and write a program E that will, give a, b, t, tell if there is a path from a to b of length $\leq t$.

$\text{ALG}(a, b, t)$

1. If $t = 0$ then if $a = b$ output YES, else output NO.
2. If $t = 1$ then if $E(a, b) = 1$ output YES, else output NO.
3. For all $v \in V$ If $\text{ALG}(a, v, t/2) = \text{YES}$ AND $\text{ALG}(v, b, t/2) = \text{YES}$ then output YES

The depth of recursion is $O(\log t)$ and each recursion need to store a, b, t which is $O(\log t)$. Hence the program runs in space $O((\log t)^2)$.

We run this on OUR graph with $t = 2^{S(n)}$ and get the result.

What do we know about NL? Using the above we get

$\text{NSPACE}(\log n) \subseteq \text{DSPACE}((\log n)^2) \subseteq \text{DTIME}(2^{(\log n)^2})$.

Can we do better? YES!

Theorem 5.2 $NL \subseteq P$.

5
Proof: Let $A \in NL$ via TM M. Given x we want to determine if SOME path in $M(x)$ goes to an accept state.

We will assume M has 1 worktape. The modification for many tapes are easy.
A configuration is as in the last theorem. KEY- we CAN write down all possible configs. In the last theorem we had a graph IMPLICITLY. Here we have one EXPLICITLY.

Write down all of possible config. There are only $2^{O(\log n)}$ of them which is some poly, say n^c. Consider them to be nodes of a graph. We draw a directed graph from u to v if from u you CAN go to v in one step (note that this depends on both u and x).

$x \in A$ iff there is a path from the start config to an accept config in the graph. This can be determined in time poly in the size of the graph which is poly in n^c so poly.

6 Time and Space Hierarchy Theorems

Important Note: Imagine doing the following: Take a list of TMs M_1, M_2, \ldots and then bound M_i by $T(n)$. That is, when you run M_i if it has not halted by $T(|x|)$ steps then shut it off and declare its answer to be 0. To save on notation we will also call this list

$$M_1, M_2, M_3, \ldots$$

KEY- if a set is in $DTIME(T(n))$ then there is an i such that M_i decides it in time $T(n)$,
KEY- if M_i decides a set then it is in $DTIME(T(n))$.
Hence we have a list that represents all of $DTIME(T(n))$.
Does more time help? YES but the proof involves some details we will skip.

Theorem 6.1 (The Time Hierarchy Theorem) For all $T(n)$ there is a set in $DTIME(T(n) \log T(n))$ that is NOT in $DTIME(T(n))$.

Proof:
Let M_1, M_2, \ldots, represent all of $DTIME(T(n))$ as described above.
We construct a set A to NOT be in $DTIME(T(n))P$. We will want A and to DISAGREE with M_1, to DISAGREE with M_2, etc. Lets state this in terms of REQUIREMENTS
$R_i : A$ and M_i differ on some string.
We want A to satisfy all of these requirements.
Here is our algorithm for A. It will be a subset of 0^*.

1. Input 0^*.

2. Run $M_i(0^i)$. If the results is 1 then output 0. If the results is 0 then output 1.

Note that, for all i, M_i and A DIFFER on 0^i. Hence every R_i is satisfied. Therefore $A \notin DTIME(T(n))$.

How do we get $A \in DTIME(T(n)) \log T(n)$? It is KNOWN that any multitape $DTIME(T(n))$ TM can be SIMULATED by a 2-tape TM in time $T(n) \log T(n)$. So we use this to run $M_i(0^i)$ in the algorithm. The entire algorithm can then be one in time $T(n) \log T(n)$.

The following theorem is proved similarly:

Theorem 6.2 (The Space Hierarchy Theorem) Let S_1 and S_2 be computable functions (think of them as increasing). Assume $\lim_{n \to \infty} \frac{S_1(n)}{S_2(n)} = \infty$. Then $DSPACE(S_2(n)) \subseteq DSPACE(S_1(n))$.