
Turing Machines and Diagonalization

1 Turing Machines

Turing machines are a model of computation. It is believed that anything that can
be computed can be computed by a Turing Machine. The definition won’t look like
much, and won’t be used much (except in the proof of the Cook-Levin theorem which
will be in a different set of notes); however, it is good to have a rigorous definition to
refer to.

Def 1.1 A Turing Machine is a tuple (Q, Σ, δ, s, h) where

• Q is a finite set of states

• Σ is a finite alphabet. It contains the symbol #.

• δ : Q− {h} × Σ → Q× Σ ∪ {R,L}

• s ∈ Q is the start state

• h ∈ Q is the halt state.

We use the following convention:

1. On input x ∈ Σ∗, x = x1 · · ·xn, the machine starts with tape

#x1x2 · · ·xn#### · · ·

that is one way infinite.

2. The head is initially looking at the xn.

3. If δ(q, σ) = (p, τ) then the state changes from q to p and the symbol σ is
overwritten with τ . The head does not move.

4. If δ(q, σ) = (p, L) then the state changes from q to p and the head moves
Left one square. overwritten with τ . The head does not move. (Similar for
δ(q, σ) = (p, R).

5. If the machine is in state h then it is DONE.

6. If the machine halts and outputs 1 then we say M ACCEPTS x. If the machine
halts and outputs 0 then we say M REJECTS x.

1

Important Note: We can code Turing machines into numbers in many ways. The
important think is that when we do this we can, given a number i, extract out which
Turing Machine it corresponds to (if it does not correspond to one then we just say
its the machine that halts in one step on any input). Hence we can (and will) say
things like

• Let M1, M2, M3, . . . be a list of all Turing Machines.

• Run Mi(x). This is easy- given i, we can find Mi, — that is, find the code for
it, and then run it on x.

Def 1.2 A set A is DECIDABLE if there is a Turing Machine M such that

x ∈ A → M(x) = 1

x /∈ A → M(x) = 0

Def 1.3 Let T (n) be a computable function (think of it as increasing). A is in
DTIME(T (n)) if there is a TM M that decides A and also, for all x, M(x) halts in
time ≤ T (|x|).

Def 1.4 A is in Polynomial time (henceforth P) if there is a polynomial p(n) such
that A is in DTIME(p(n)).

2 There is a set that is NOT in P

Important Note: Imagine doing the following: Take a list of TMs M1, M2, . . . and
then bound Mi by ni. That is, when you run Mi if it has not halted by |x|i steps
then shut it off and declare its answer to be 0. To save on notation we will also call
this list

M1, M2, M3, . . .

KEY- if a set is in P then there is an i such that Mi decides it in poly time.
KEY- if Mi decides a set then it is in P .
Hence we have a list that represents all of P .

Theorem 2.1 There exists a decidable set that is NOT in P .

2

Proof:
Let M1, M2, . . . , represent all of P as described above.
We construct a set A to NOT be in P . We will want A and to DISAGREE with

M1, to DISAGREE with M2, etc. Lets state this in terms of REQUIREMENTS
Ri : A and Mi differ on some string.
We want A to satisfy all of these requirements.
Here is our algorithm for A. It will be a subset of 0∗.

1. Input 0i.

2. Run Mi(0
i). If the results is 1 then output 0. If the results is 0 then output 1.

Note that, for all i, Mi and A DIFFER on 0i. Hence every Ri is satisfied. Therefore
A /∈ P .

3

