
If GI is NP-complete then Σp
3 = Πp

3

Exposition by William Gasarch

1 Introduction

Our goal is to show that if GI is NP-complete then Σp
3 = Πp

3. We will do
this in several parts which we explain here informally.

1. If a prover wanted to convince a verifier that G1 ≡ G2 then this is easy:
just give the verifier the isomorphism. What if a prover wanted to
convince a verifier that G1 6≡ G2? We show that if we allow the verifier
and prover a public source of random coins and we allow two rounds of
interaction (that is, verifier sends to prover, and prover responds) then
there is an interactive protocol where the following holds.

(G1, G2) ∈ GI → Pr(Protocol returns YES) = 1
(G1, G2) /∈ GI → Pr(Protocol returns YES) ≤ 1

4

This is written as GI ∈ AM. (This will stand for Arthur-Merlin.)

2. We show that
AM ⊆ NP/poly.

3. Combining items 1 and 2 above we get

GI ∈ NP/poly.

4. If GI is NP-complete then

SAT ≤p
m GI

so
TAUT ≤p

m GI.

Since
GI ∈ NP/poly,

TAUT ∈ NP/poly.

We showed in the notes on sparseness that

TAUT ∈ NP/poly → Σp
3 = Πp

3.

Hence we have
Σp

3 = Πp
3.

1

5. We showed in the notes on P, NP, and PH that

Σp
3 = Πp

3 → PH == Σp
3 = Πp

3.

6. Putting this all together we get

GI NPC → PH == Σp
3 = Πp

3.

Two types of interactive proof systems have been defined: (1) Goldwasser,
Micali, and Rackoff [3] defined interactive protocols with private coins, and
(2) Babai [1, 2] defined interactive protocols with public coins. It was first
shown that with private coins GI had an interactive protocol of two rounds.
Goldwasser and Sipser [4] showed that public coins were equivalent to private
coins, and hence there is an interactive protocol for GI with public coins. A
more direct proof appears in [6]. We present a version of that proof, from
[5], here.

2 The Class Arthur-Merlin

NP can be viewed as an interaction between a prover and a verifier. Both
the prover and the verifier have access to the input x. The prover (who is all
powerful) sends the verifier a witness y. The verifier then verifies that y is
evidence that x ∈ A. In this spirit we give an alternative definition of NP.

Def 2.1 A ∈ NP if there exists a set B ∈ P such that the following holds.

x ∈ A → (∃py)[(x, y) ∈ B]
x /∈ A → (∀py)[(x, y) /∈ B]

We want to modify the roles of the verifier (who we will call Arthur)
and the prover (who we will call Merlin). Picture the following. On input x
Arthur sends a random sequence r to Merlin who then tries to send evidence
that x ∈ A. This evidence is a message that depends on x and r. Upon
receiving the message, Arthur tries to use this to verify that x ∈ A. He does
this in deterministic poly time.

Note that we do not need Arthur to send the random bits—they could
come from an independent source. We also do not even need Merlin— all
we need is that if x ∈ A then evidence of this probably exists, and if x /∈ A

2

then evidence that x ∈ A probably does not exist. In the formal definition
we take this view. That is, the formal definition does not mention Arthur
sending bits or Merlin producing evidence. Our protocol that GI ∈ AM will
use the intuition of Arthur sending bits and Merlin responding; however, that
protocol can easily be translated into the formal framework we define here.

In the literature these are called “Arthur-Merlin games” where the intu-
ition is that Merlin is trying to convince Arthur that x ∈ A. Merlin is all
powerful, Arthur is just poly time and coins. These are abbreviated ‘AM
games’. The order of the letters matters— Arthur goes first, then Merlin
goes.

Def 2.2 A set A is in AM if there exists polynomials p, q, and a set B ∈ P
such that the following hold

1. The domain of B is
⋃∞

n=0{0, 1}n × {0, 1}q(n) × {0, 1}p(n). (Arthur and
Merlin both have x. Arthur challenges Merlin to show that x ∈ A by
sending him a random string r ∈ {0, 1}p(n). Merlin responds to the
challenge with y ∈ {0, 1}q(n). Upon receiving y Arthur computes if
(x, y, r) ∈ B. If this yields YES then Arthur is convinced that x ∈ A.
If this yields NO then Arthur is not convinced. He may err with a small
probability.)

2. Let x be of length n.

x ∈ A → Pr|r|=p(n)((∃y, |y| = q(n))[(x, y, r) ∈ B]) ≥ 3
4
.

x /∈ A → Pr|r|=p(n)((∃y, |y| = q(n))[(x, y, r) ∈ B]) ≤ 1
4
.

Exercise 1

1. Show that if you replace the 3
4

with 99
100

and the 1
4

with 1
100

in the above
definition, you still get AM.

2. Show that if you replace the 3
4

with 1− 1
2|x| and the 1

4
with 1

2|x| in the
above definition, you still get AM.

3 Some Graph Theory

From now on n is the number of vertices of the graph in question!!!

3

Def 3.1 Graphs G = (V1, E1) and H = (V2, E2) are isomorphic if there
exists a bijection f : V1 → V2 such that (a, b) ∈ E1 iff (f(a), f(b)) ∈ E2.

Notation 3.2 If G1 and G2 are graphs then G1 ≡ G2 means that G1 and
G2 are isomorphic.

Let G = (V, E) be a graph. We want to look at what happens when we
relabel the graph by permuting the vertices. This leads to n! graphs. How
many of them are really different?

Def 3.3 Let G = (V, E) be a graph. An automorphism of G is a bijection
σ : V → V such that, for all x, y ∈ V , if (x, y) ∈ E then (σ(x), σ(y)) ∈ E.

Def 3.4 A permutation of n elements is a bijection of the elements to them-
selves. Sn is the set of all such permutations. AUT (G) is the set of all
automorphisms of G. If V = {1, . . . , n} then AUT (G) ⊆ Sn. Both AUT (G)
and Sn are groups. (We do not use this fact.)

Def 3.5 Let G = (V, E) and V = {1, . . . , n}. Let σ be a permutation of V .
(We view σ as a bijection from V to V .) The graph σ(G) is (V, E ′) where

E‘ = {(σ(x), σ(y) : (x, y) ∈ E}.

Fact 3.6 If G is a graph and σ is an automorphism of that graph then G
and σ(G) are the same graph (not just isomorphic, they are the exact same).

Lemma 3.7 If G is a graph on n vertices then

|{τ(G) : τ ∈ Sn}| =
n!

|AUT (G)|
.

(HOW TO VIEW THIS: the set is a SET not a MULTISET. Sometimes τ(G)
will really EQUAL G (not isom, actually EQUAL). We DO NOT count this
twice.)

4

Proof: Let AUT (G) = {σ1, σ2, . . . , σm}. The multiset
B = {σ(G) : σ ∈ Sn}
has n! elements in it. Let the elements be G1, . . . , Gn!. Note that if Gi

and Gj are the same graph iff there exists an automorphism σ such that
σ(Gi) = Gj. Hence the only graphs that are the same as Gi are

{σ1(Gi), . . . , σm(Gi)}.

Therefore for every graph in B there are |AUT (G)| graphs that are the
same as it. This results in a partition of the multiset B into parts of size
|AUT (G)|. Hence the number of parts, which is the number of distinct
graphs, is n!

|AUT (G)| .

The following sets will be useful.

Def 3.8 Let G, G1, G2 be graphs on n vertices.

1. Y (G) = {(H, σ) : G ≡ H ∧ σ ∈ AUT (G)}. Note that there are n!
|AUT (G)|

choices for H and |AUT (G)| choices for σ. Hence |Y (G)| = n!.

2. Y (G1, G2) = Y (G1) ∪ Y (G2). Note that

|Y (G1, G2)| =
{

n! if G1 ≡ G2;
2n! if G1 6≡ G2.

Note that if G1 ≡ G2 then Y (G1, G2) is small, whereas if G1 6≡ G2

then Y (G1, G2) is large. This is silly- in the first case the size is n!
and in the second it is 2n!. However we want to make it non-silly. We
want to increase the difference. Hence in the next definition we do this
formally.

3. Let X(G1, G2) = Y (G1, G2) × · · · × Y (G1, G2) (there are n copies of
Y (G1, G2). We use n copies to help us in the calculation in Theo-
rem 5.1.) Note that

|X(G1, G2)| =
{

(n!)n if G1 ≡ G2;
2n(n!)n if G1 6≡ G2.

We can now rethink the GI problem—Merlin has to convince Arthur
that the set X(G1, G2) is ‘large’- that is- size 2n(n!)n rather than (n!)n. How
can Merlin convince Arthur that X is large? Remember- we are computer

5

scientists! We can use Hash Functions! If a hash function on X has lots of
collisions then X must be large! We will refine this notion.

We will want to represent the elements in X(G1, G2). How long is that
representation?

1. A graph takes Θ(n2) bits to represent.

2. An automorphism takes Θ(n log n) bits to represent.

3. Every element in Y (G1, G2) takes Θ(n2 + n log n) = Θ(n2) bits to
represent.

4. Every element in X(G1, G2) takes Θ(n(n2)) = Θ(n3) bits to represent.

We leave the following easy lemma to the reader.

Lemma 3.9 There exists a polynomial predicate R and a polynomial p such
that, for all n, for all graphs G, H on n vertices, for all σ

z ∈ X(G, H) → (∃y)[|y| = p(n) ∧R(G, H, z, y)].
(In essence, if Arthur has G, H, z and z ∈ X(G, H), then there is a short

proof that z ∈ X(G, H).)

4 Hash Functions

Say a set X ⊆ {0, 1}N is ‘large’. If we pick a random hash function h :
{0, 1}N → {0, 1}k (where k << N) then it is ‘likely’ that many elements of
X will map to 0k. Say a set X ⊆ {0, 1}N is ‘small’. If we pick a random
hash function h : {0, 1}N → {0, 1}k (where k << N) then it is ‘likely’ that
few elements of X will map to 0k.

For Merlin to prove to Arthur that X is large they will do the following:
Arthur will pick a random hash function h : {0, 1}N → {0, 1}k (we will
specify N and k later) and Merlin will try to find several elements x ∈ X
such that h(x) = 0k.

Arthur will pick a random hash function by picking kN random bits and
putting them into an k × N matrix. Call this matrix C. Let h : {0, 1}N →
{0, 1}k be the function h(x) = Cx (multiplying the matrix C by the vector
x). All of the arithmetic is done mod 2.

Def 4.1

6

1. A sample space is the set of things that could happen. In our case it
will be the set of possible hash functions that could be produced.

2. A random variable is a mapping from the sample space to numbers.
In our case it will be mapping the hash function h to the number
|{x : h(x) = 0k}|.

3. If S is a random variable then E(S) is its expected value and V ar(S)
is its variance, which is defined as E((S − E(S))2). This is known to
equal E(S2)− E(S)2.

Lemma 4.2 Let k,N ∈ N. Let X ⊆ {0, 1}n. Assume 0N /∈ X. Consider
the following random variable: Pick a random k × n 0-1 valued matrix M .

S = |{x ∈ X : M(x) = 0k}|.

Output S. Then E(S) = 2−k|X| and V ar(S) ≤ 2−k|X|. (Note that neither
E(S) nor V ar(S) depends on n, just on k and |X|.)

Proof: Before looking at E(S) and V ar(S) we will need to look at E of
some easier random variables

Let x, y ∈ X. Let Rx be the random variable

Rx =

{
1 if h(x) = 0k;
0 if h(x) 6= 0k.

Let Ry be similar.
Let hi(x) be the ith bit of the vector h(x).

E(Rx) = Pr(h(x) = 0k) · 1 + Pr(h(x) 6= 0k) · 0;
E(Rx) = Pr(h(x) = 0k);
E(Rx) =

∏k
i=1 Pr(hi(x) = 0).

Recall that x is fixed and that x 6= 0N . The probability that hi(x) = 0
can be phrased as follows: What is the probability that a randomly chosen y
will make x · y ≡ 0 (mod 2)? An easy exercise shows that this is 1

2
. Hence

E(Rx) =
∏k

i=1 Pr(hi(x) = 0) = 1
2k .

The exact same calculation shows that
E(R2

x) = 1
2k . (For any 0-1 valued random variable Z, Z = Z2, hence

E(Z) = E(Z2).)
We now compute E(RxRy).

7

E(RxRy) = Pr(h(x) = 1 ∧ h(y) = 1) · 1+
Pr(h(x) = 0)Pr(h(y) = 1) · 0+
Pr(h(x) = 1)Pr(h(x) = 0) · 0+
Pr(h(x) = 0)Pr(h(x) = 0) · 0

= Pr(h(x) = 1)Pr(h(y) = 1)
= 1

2k
1
2k = 1

4k

We are now ready to tackle E(S) and V ar(S). Note that S =
∑

x∈X Rx.
E(S) = E(

∑
x∈X Rx) =

∑
x∈X E(Rx) = 1

2k |X|.
We now look at V ar(S). Recall that V ar(S) = E(S2)− (E(S))2.

E(S2) = E((
∑

x∈X Rx)(
∑

y∈X Ry));
=

∑
x∈X

∑
y∈X E(RxRy);

=
∑

x∈X E(R2
x) +

∑
x 6=y E(RxRy);

=
∑

x∈X
1
2k +

∑
x 6=y

1
4k ;

= 1
2k |X|+ 1

4k |X|(|X| − 1);

V ar(S) = E(S2)− (E(S))2

= 1
2k |X|+ 1

4k |X|(|X| − 1)− 1
4k |X|2

= 1
2k |X|+ 1

4k |X|2 − 1
4k |X| − 1

4k |X|2
= 1

2k |X| − 1
4k |X|

≤ 1
2k |X|

5 GI ∈ AM

We code elements of X(G1, G2) as strings of length N . By the note at the
end of Section 3, N = Θ(n3). We leave it to the reader to devise a coding
system. Make sure that 0N /∈ X(G1, G2). We will let k = dlog((n!)n)e
throughout. We will use that 2k = Θ((n!)n). Let S be the random variable
from Lemma 4.2 with X = X(G1, G2). Note the following:

1. If G1 ≡ G2 then |X(G1, G2)| = (n!)n. Hence

E(S) = (n!)n/2k = Θ(1).

and
V ar(S) ≤ Θ(1).

8

2. If G1 6≡ G2 then |X(G1, G2)| = 2n(n!)n. Hence E(S) = 2n(n!)n/2k =
Θ(2n) and V ar(S) ≤ Θ(2n).

Theorem 5.1 GI ∈ AM.

Proof:
We present the protocol and show that it works.

1. Input(G1, G2). (Both Merlin and Arthur see this.) Let N be the exact
length of an element of X(G1, G2). Recall that N is Θ(n3).

2. Arthur sends Merlin an (randomly chosen) N × k matrix of 0’s and 1’
M . Since X(G1, G2) ⊆ {0, 1}N we use M as a function from X(G1, G2)
to {0, 1}k.

3. Merlin sends Arthur z1, . . . , zn ∈ {0, 1}N . For each zi he also sends
back proof that zi ∈ X(G1, G2) in the form of a string yi of length
p(n) such that R(zi, yi, G1, G2). (The p and R are from Lemma 3.9.)
Merlin’s intent is that all the zi are in X(G1, G2) and they all map to
0k.

4. For each i, Arthur checks if that R(zi, yi, G1, G2) is true and that
M(zi) = 0k. If for any i either of these fails then output NO. Else
output YES.

We show that if G1 ≡ G2 then it is unlikely that Merlin can come up with
n elements that map to 0k, whereas if G1 6≡ G2 then it will be quite likely.

We use the following lemma which is Chebyshev’s inequality. We do not
present a proof.

Lemma 5.2 If S is any random variable and a > 0 then
Pr(|S − E(S)| ≥ a) < V ar(S)

a2 .

Intuitively this is saying that the probability that S is far away from E(S)
is small, and how small depends on V ar(S).

There are two cases of the protocol to consider.

Case 1: G1 ≡ G2. We need to show that Merlin will have a hard time
fooling us. Let

S = {x : M(x) = 0k}.

9

We show that for most choices of M there do not exist n elements in S
(that is, there do not exists n elements of X(G1, G2) that map to 0k.) Since
G1 ≡ G2 we have that E(S) = Θ(1) and V ar(S) ≤ Θ(1). We want to bound
Pr(S ≥ n). We want to phrase this as Pr(|S−E(S)| ≥ a) for some a so that
we can use Chebyshev’s inequality.

S ≥ n
S − E(S) ≥ n− E(S)
|S − E(S)| ≥ |n− E(S)|
|S −Θ(1)| ≥ |n−Θ(1)|

We now apply Chebyshev’s inequality on S with a = n−Θ(1).

Pr(S ≥ n) ≤ Pr(|S − E(S)| ≥ n−Θ(1));

≤ V ar(S)
(n−Θ(1))2

;

≤ Θ(1)
(n−Θ(1))2

;

For large enough n, Pr(S ≥ n) ≤ 1
4
. Hence we have

G1 ≡ G2 → Pr(S ≥ n) ≤ 1

4
.

Case 2: G1 6≡ G2. We need to show that Merlin can convince us that
X(G1, G2) is large. More precisely, we need to show that for most choices
of M there do exist n elements in S (that is, there do exists n elements of
X(G1, G2) that map to 0k.) Since G1 6≡ G2 we have that E(S) = 2n and
V ar(S) ≤ 2n. We want to phrase Pr(S ≤ n−1) in terms of Pr(|S−E(S)| ≥ a)
for some a.

S ≤ n− 1
S − E(S) ≤ n− 1− E(S)
E(S)− S ≥ E(S)− n + 1
|E(S)− S| ≥ 2n − n + 1
|E(S)− S| ≥ 2n − n

Pr(S ≤ n− 1) ≤ Pr(|S − E(S)| ≥ 2n − n);

≤ V ar(S)
(2n−n)2

;

≤ 2n

(2n−n)2
;

10

For large n this is ≤ 1
4
. Hence the probability that there are ≤ n − 1

elements in S is ≤ 1
4
. Therefore the probability that there are n elements of

S is ≥ 1− 1
4

= 3
4
. Hence we have

G1 6≡ G2 → Pr(S ≤ n− 1) ≥ 3

4
.

6 AM ⊆ NP/poly

We need the following which we leave as an exercise.

Notation 6.1 If X and Y are sets then X∆Y is (X − Y) ∪ (Y −X). Note
that X∆Y is the set of elements where X and Y differ.

Lemma 6.2 Let A, A′ ⊆ {0, 1}∗. If there exists a polynomial s such that,
for all n,

|(A ∩ {0, 1}≤n)∆(A′ ∩ {0, 1}≤n| ≤ s(n)

then A ∈ Σp,SPARSE
i iff A′ ∈ Σp,SPARSE

i . (We are saying that if A and A′ only
differ by a polynomial amount on each length n, then A and A′ are similar
enough that they are either both in Σp,SPARSE

i or both not in Σp,SPARSE
i .)

We can now prove our main theorem.

Theorem 6.3 AM ⊆ NP/poly.

Proof: Let A ∈ AM via p, q, B.
By Exercise 1 there exists polynomials p, q,and a poly predicate V such

that the following hold

1. The domain of V is {0, 1}n×{0, 1}q(n)×{0, 1}p(n). The range is {0, 1}.

2. Let x be of length n.

x ∈ A → Pr|r|=p(n)((∃y, |y| = q(n))[V (x, y, r) = 1]) ≥ 1− 1
2n .

x /∈ A → Pr|r|=p(n)((∀y, |y| = q(n))[V (x, y, r) = 1]) ≤ 1
2n .

11

For each x ∈ A, |x| = n, there are at least (1 − 1
2n)2p(n) strings r ∈

{0, 1}p(n) such that
(∃y, |y| = q(n))[V (x, y, r)].
For each x /∈ A, |x| = n, there are at least (1 − 1

2n)2p(n) strings r ∈
{0, 1}p(n) such that

(∀y, |y| = q(n))[¬V (x, y, r)].
In either case we say that the string r is GOOD FOR x in that it yields

CORRECT information about x.
Consider the following thought experiment. Picture a 2n × 2p(n) array

such that the following hold.

1. The rows are indexed by x ∈ {0, 1}n.

2. The columns are indexed by r ∈ {0, 1}p(n).

3. We put GOOD in the (x, r) entry if r is GOOD for x.

4. We put BAD in the (x, r) entry if r is NOT GOOD for x.

Here is a sketch of what it might look like

0p(n) 0p(n)−11 · · · 1p(n)

0n GOOD BAD · · · GOOD
0n−11 GOOD GOOD · · · BAD

...
...

...
...

...
1n BAD GOOD BAD GOOD

(The · · · and
... are not meant to indicate any pattern.)

How many GOOD’s are in this array? For each x ∈ {0, 1}n there are
at least (1 − 1

2n)2p(n) GOODS. Hence there are at least 2n(1 − 1
2n)2p(n) =

(2n − 1)2p(n) GOODS. Since there are 2p(n) columns there must be at least

one column with at least (2n−1)2p(n)

2p(n) = 2n − 1 GOODS. Let r0 be the index of
the column that has 2n− 1 GOODS. Let x0 be the one (if it exists) row such
that (x0, r0) is labeled BAD.

Note that for x ∈ {0, 1}n, x 6= x0, we have
x ∈ A → (∃y, |y| = q(n))[V (x, y, r0) = 1]
x /∈ A → (∀y, |y| = q(n))[V (x, y, r0) = 0]
Let ADV(0n) be the r0 that you obtain. Note that (aside from x0)
A = {x : (∃y, |y| = q(|x|)[V (x, y, ADV(0|x|) = 1]}.

12

Hence A ∈ NP/poly if you ignore the status of x0. By Lemma 6.2 we
have A ∈ NP/poly.

7 If GI is NPC then PH collapses

We recall two theorems from other sets of notes. From the notes on Sparse
Sets we recall the following.

Theorem 7.1 If TAUT ∈ NP/poly then Σp
3 = Πp

3.

From the notes on P, NP, and PH we recall the following

Theorem 7.2 If Σp
i = Πp

i then PH = Σp
i = Πp

i .

We will need the following which is an easy exercise.

Theorem 7.3 If A ∈ AM and B ≤p
m A then B ∈ AM.

We now prove the main theorem.

Theorem 7.4 If GI is NPC then Σp
3 = Πp

3.

Proof: If GI is NPC then SAT ≤p
m GI, so

TAUT ≤p
m GI.

By Theorem 5.1 GI ∈ AM. By Theorem 7.3

TAUT ∈ AM.

By Theorem 6.3 AM ⊆ NP/poly. Hence

TAUT ∈ NP/poly.

By Theorem 7.1

PH = Σp
3 = Πp

3.

13

References

[1] L. Babai. Trading group theory for randomness. In Proceedings of the
Seventeenth Annual ACM Symposium on the Theory of Computing, Prov-
idence RI, 1985.

[2] L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system
and a hierarchy of complexity classes. Journal of Computer and System
Sciences, pages 254–276, 1988. Prior version in STOC85.

[3] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, pages 186–208,
1989.

[4] S. Goldwasser and M. Sipser. Private coins versus public coins in interac-
tive proof systems. In S. Micali, editor, Randomness and Computation,
pages 73–90, Greenwich, CT, 1989. JAI Press. Earlier version in STOC86.

[5] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem:
Its Structural Complexity. Progress in Theoretical Computer Science.
Birkhauser, Boston, 1993.

[6] U. Schnoing. Graph isomorphism is in the low hierarchy. Journal of
Computer and System Sciences, 59:312–323, 1988.

14

