
A Natural Problem that is NOT in P
Exposition by Bill Gasarch

1 Introduction

We present the proof, due to Meyer and Stockmeyer [1] that the following (somewhat
natural) problem is NOT in P (without any assumptions). It will take some definitions
to get to it.

Def 1.1 Let Σ be a finite alphabet. A Regular Expression (henceforth Reg Exp) is
defined as follows.

• For all σ ∈ Σ, σ is a reg exp.

• ∅ is a reg exp

• If α and β are reg exps then so is α ∪ β, αβ, and α∗

If α is a regular expression then L(α) is the set of strings that α generates.

In a textbook you might see the expression a5b2. This is not formally a Reg Exps;
however, its meaning is clear and it can can be rewritten as the regular expression
aaaaabb. Does allowing exponents matter? In terms of getting more languages NO,
you will still get regular languages. In terms of length of representation YES. If we
allow exponents then Reg Exps can be represented far more compactly. Note that an

takes O(log n) space to write, where as aaa · · · a (n times) takes O(n) space to write.
We define textbook reg expressions.

Def 1.2 Let Σ be a finite alphabet. A Textbook Regular Expression (henceforth t-Reg
Exp) is defined as follows.

• For all σ ∈ Σ, σ is a t-reg exp.

• ∅ is a t-reg exp

• If α and β are t-reg exps then so is α ∪ β, αβ and α∗

• If α is a t-reg exp and n ∈ N then αn is a t-reg exp.

If α is a t-reg exp then L(α) is the set of strings that α generates.

Here is the question which we call t-reg expression equivalence

TRE = {αis a t-reg exp | L(α) 6= Σ∗}.

1

Note 1.3 In the original paper they called t-regular expressions Regular expression
with squaring. For example, they would write a10 as (((a)2)2)2aa.

How hard is TRE?

Theorem 1.4 TRE ∈ DTIME(O(22O(n)
)).

Proof:

1. Input(α), length n.

2. Replace σm with m σ’s to get reg exp β which is equivalent to t-reg exp α. Note
that β is of length 2O(n).

3. Convert β to an NDFA M of size 2O(n).

4. Look at ALL strings of length 2O(n) For each one run it through the NDFA by
keeping track of the set of states you might be in.

This takes time O(22O(n)
).

Can we do better if we do this non-deterministically? Yes- sort of. We can do
better on space.

Theorem 1.5 TRE ∈ NSPACE(2O(n)) ⊆ NEXPSPACE.

Proof:

1. Input(α), length n.

2. Replace σm with m σ’s to get reg exp β which is equivalent to t-reg exp α. Note
that β is of length 2O(n).

3. Convert β to an NDFA M of size 2O(n).

4. Guess a string char-by-char. As you guess it keep track of the SET of states
you would be in. If ever you find a set of states where all are NOT final states,
then there must be a string that is NOT accepted. Stop and say YES.

This takes space O(2O(n)).

We will show that TRE requires this much space. Hence (obviously) TRE requires
this much time. Hence TRE is NOT in P .

2

2 Completeness

Recall:

Def 2.1

1. PSPACE = DSPACE(nO(1)).

2. NEXPSPACE = DSPACE(2nO(1)
).

We want a notion of a problem being hard for these classes.

Def 2.2 Let A, B be sets. A ≤ B if there exists f ∈ P such that

(∀x)[x ∈ A iff f(x) ∈ B].

We leave the following proof to the reader.

Lemma 2.3 If A ≤ B and B ∈ P then A ∈ P .

Def 2.4 Let X be any complexity class.

1. A set B is X-hard if, for all A ∈ X, A ≤ B.

2. A set B is X-complete if B ∈ X and B is X-hard.

We want the following to be true:

Conjecture 2.5 Let X be any complexity class. Let B be X-complete. If A ≤ B
then A ∈ X.

There are some X’s for which this is not true. Consider DTIME(2O(n)). Let B
be DTIME(2O(n))-complete. Let A ≤ B via f . Here is the obvious algorithm for A:

On input x, compute f(x) and test if it is in B. If f(x) ∈ B then output YES,
else output NO.

This might not work. For example, f might be in time O(n2). Hence |f(x)| ≤ |x|2.
So the question f(x) ∈ B takes time 2O(n2

.
The reason that this happened is that DTIME(2n) 6= DTIME(2p(n).
We are NOT going to formally define a notion of closed under polynomial stuff.

However, we will only deal with such classes.

Theorem 2.6 Let X be a complexity class such that P ⊂ X (strict containment). If
A is X-hard then A /∈ P .

3

Proof: Assume, by way of contradiction, that A ∈ P . Let C ∈ X − P . Since A is
X-hard we have C ≤ A. By Lemma 2.3 C ∈ P . This contradicts C /∈ P .

Theorem 2.6 gives us a way to show that a set (perhaps even a natural one!) is
NOT in P. Recall that PSPACE ⊂ EXPSPACE by the Space Hierarchy Theorem.
Hence if A is EXPSPACE-hard then A is NOT in PSPACE. Note that we are ac-
tually using the Space Hierarchy theorem to prove that a somewhat natural language
is NOT in P, even though the Space Hierarchy theorem itself yielded a non-natural
language that is EXPSPACE − PSPACE.

3 TRE is NEXPSPACE-Complete

Before we prove this theorem we need to set up conventions for Nondet TMs.

Notation 3.1 Let M be a NONDET TM that runs in space S(n). Let x be of length
n. Let Σ be the alphabet to the TM. Let $ be a symbol that is not in Σ. We will
use it as a separator. Let Q be the states. Let Γ = Σ ∪ Σ×Q ∪ {$} A configuration
is a string that (1) begins with $, (2) after the $ has S(n) characters, and (3) the
characters are all from Σ except for one element of Q. We describe how to interpret
it by an example.

If the configuration is

$aabba###bb(a, q)abba###ab

It means that

• The $ has no meaning but we will need it as a separator later.

• The tape has
aabba###bbaabba###ab

on it. All other symbols to the right are blank; however, the head will never go
there.

• The state is q.

• The head is at the space which in the configuration we have (a, q).

• Note that if we know the configuration then we know the possibilities for the
next one (recall that M is NONDET). Also note that the next one configuration
and this one will only differ in a at most three consecutive characters that are
close to (and including) the state.

We need to know when a string z represents an accepting computation of M(x).

4

Def 3.2 Let M be a NONDET TM that runs in space S(n). Let x be of length n.
Let Σ be the alphabet to the TM. Let $ be a symbol that is not in Σ. We will use
it as a separator. Let Q be the states. Let Γ = Σ ∪ Σ × Q ∪ {$}. The function
STEP : Γ× Γ× Γ → 2τ1τ2τ3 is defined as follows.

• If σ1σ2σ3 ∈ (Γ− $)(Γ− $)(Γ− $) then τ1τ2τ3 ∈ STEP (σ1σ2σ3) if when σ1σ2σ3

are consecutive symbols in a configuration of a computation for M , it is possible
for τ1τ2τ3 to be consecutive symbols in the next configuration. Note that if none
of σ1, σ2σ3 contain a state then σ1σ2σ3 ∈ STEP (σ1σ2σ3). There may be other
strings also since we don’t know where the head is— it could be just to the left
and have a move-right command. In short- anything NOT ruled out is allowed.

• If σ1σ2σ3 contains a $ then think of it as representing the end of one config and
the beginning of another. STEP doesn’t change that much, its still the set of
successors (though now in parts of two configurations) that are not ruled out.

Def 3.3 Let M be a NONDET TM that runs in space S(n). Let x be of length n.
Let Σ be the alphabet to the TM. Let $ be a symbol that is not in Σ. We will use
it as a separator. Let Q be the states. Let Γ = Σ ∪ Σ × Q ∪ {$} A string z ∈ Γ∗

represents an accepting computation M(x) if the following hold:

1. z ∈ ($(Γ − $)S(n))∗. Hence we can write z = $C1$C2 · · · $Cm where each Ci is
exactly S(n) long.

2. For every σ1σ2σ3 if z = Γ∗σ1σ2σ3Γ
S(n)−2τ1τ2τ3 then τ1τ2τ3 ∈ STEP (σ1σ2σ3).

We will be more concerned with when a string z is NOT an accepting computation.

Theorem 3.4 TRE is NEXPSPACE-complete and hence NOT in PSPACE, and
hence NOT in P .

Proof: By Theorem 1.5 TRE ∈ NEXPSPACE. We now need to show that
TRE is NEXPSPACE-hard.

Let A ∈ NEXPSPACE. We show A ≤ TRE. Let M be the NEXPSPACE
machine for A. Let c be such that S(n) = 2nc

bounds the amount of space that M
uses on a string of length n. Let Γ = Σ ∪ Σ×Q ∪ {$}.

Let x = x1x2 · · ·xn. We build a t-reg exp α such that

x ∈ A iff L(α) 6= Γ∗

We define α so that if M(x) does not accept then L(α) = Γ∗, and if M(x) does
accept then L(α) 6= Γ∗.

α is the union of the following which we present with explanation.

5

1.
(Γ− $)Γ∗∪ $(Γ− {x1})Γ∗

∪ $x1(Γ− {x2})Γ∗

∪ · · ·
∪ $x1x2 · · ·xn−2(Γ− {xn−1})Γ∗

∪ $x1x2 · · ·xn−1(Γ− (qstart, xn))Γ∗

This is the set of all strings which do NOT begin $x1x2 · · ·xn−1(qstart, xn).

This t-reg expression is of length O(n2).

2.
$x1x2 · · ·xn−1(qstart, xn)(Γ− $)∗(Γ− {#, $}(Γ− {$})∗

This is the set of strings that DO begin $x1x2 · · ·xn−1(qstart, xn) but then have
a NON-BLANK sign before the next $.

This t-reg exp is of length O(n).

3. Take the union over all σ1, σ2, σ3, τ1, τ2, τ3 ∈ Γ such that τ1τ2τ3 /∈ STEP (σ1σ2σ3)
of the following t-reg exps:

Γ∗σ1σ2σ3Γ
S(n)−3τ1τ2τ3Γ

∗.

This is the set of strings that DO NOT represent a computation since you do
not have that Ci+1 follows from Ci. This also includes strings where the $ are
not S(n) apart.

Note that we write S(n) in binary (or anything except unary). Hence this t-reg
expression is of length O(log(S(n)).

4. Γ∗qrejΓ
∗. These cannot possibly be strings that represent an ACCEPTING

computation

This t-reg exp is of length O(1).

If M(x) accepts then the accepting computation coded as a sequence of configu-
rations is NOT in L(α).

If M(x) rejects then every string is in L(α).
Note that the t-reg expression can be produced in poly time and is of length

O(n2 + log(S(n))).
Since S(n) = 2O(nc) this is O(nmax{2,c}) which is polynomial.

6

4 A PSPACE-complete Problem for Free

Let

RE = {α is a reg exp | L(α) 6= Σ∗}.

Theorem 4.1 RE is PSPACE-complete.

Proof:
RE ∈ PSPACE: This is similar to how we showed TRE ∈ EXPSPACE.
RE is PSPACE-hard: This is similar to how we showed TRE is EXPSPACE-

complete. The only difference: when we write ΓS(n) we really do write out S(n)’s Γ.
Note that S(n) is a polynomial, so we can do this.

5 Variants of TRE for higher classes

In the proof that TRE is EXPSPACE-hard the only time we used the ‘t’ in t-reg
exp was when we wrote

ΓS(n).

The key was that we wrote this using binary so it took O(log S(n)) space.
What is instead of using binary we used an even more efficient coding system.

AH- but don’t I NEED log n bits to represent all numbers of length n? YES. But we
don’t’ need to represent ALL such numbers.

Consider NSPACE(22nO(1)

). Let S(n) = 22nO(1)

. We want a variant of reg ex-
pressions that can represent ΓS(n) compactly.

The definition will use α2nc

instead of αn.
We leave the details to the reader; however, note that we can find a set that is

complete for NSPACE(22nO(1)

).
One can do higher as well by adding more stacks of 2’s.

References

[1] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In Proc. of the 13th Annual IEEE Sym.
on Switching and Automata Theory, pages 125–129, 1972.

7

