
Notes for CMSC 652
On the Number of Satisfying Assignments

William Gasarch

1 Goal

The work in this section is due to Valiant and Vazirani [3]. Our presentation
is largely taken from Kobler, Schoning, Toran [1].

Given a Boolean Formula we usually wonder if it has a satisfying assign-
ment. We look at questions about the NUMBER of satisfying assignments.

Notation 1.1 If φ is a Boolean formula then #(φ) is the number of satis-
fying assignments for φ.

We will concentrate on the following set:

PARITYSAT = {φ : #(φ) ≡ 1 (mod 2)}.

Is PARITYSAT easy? hard?
Our goal is as follows:
If PARITYSAT ∈ P, then SAT can be solved with a randomized poly time

algorithm.
Since we do not think SAT can be solved with a randomized poly time

algorithm, we think PARITYSAT /∈ P.

2 Randomized Poly Time

Def 2.1 A set A is in R (Randomized Polynomial Time) if there exists a
polynomial p, and a polynomial predicate B so that for all n, and for all x
with |x| = n, we have

x ∈ A → Pr|r|=p(n)(B(x, r)) ≥ 3
4

x /∈ A → Pr|r|=p(n)(¬B(x, r)) = 1

(Think of r as being a random string.)

Exercise 1

1

1. Show that if 3
4

is replaced by 99
100

then the resulting class is still R.

2. Show that if 3
4

is replaced by 1− 1
2|x|

then the resulting class is still R.

Note 2.2 We have defined R with 1-sided error. This is because most ran-
domized algorithms that are actually out there have 1-sided error. Classes
with 2-sided error have also been defined.

Note 2.3 If a problem is in R, then we think of it as feasible to solve in
the real world. This is because there are good (though not provably good)
random number generators. There are also theoretical reasons to think that
P = R (see [2]).

Example 2.4 Let DETPOLYZERO be the set of all square matrices M(x)
of polynomials in one variable over the integers such that the DET (M(x)) ≡
0 (that is, for any real a, DET (M(a) = 0)).

1. The matrix

x x− 1
x+ 1 x2 − 1

is NOT in DETPOLYZERO since

DET (M1(x)) = x(x2 − 1) − (x − 1)(x + 1) = x3 − x − (x2 − 1) =
x3 − x2 − x+ 1 6≡ 0.

2. The matrix

1 x− 1
x+ 1 x2 − 1

is IN DETPOLYZERO since the determinant is

DET (M2(x)) = x2 − 1− (x− 1)(x+ 1) = x2 − 1− (x2 − 1) = 0.

Here is a randomized algorithm for DETPOLYZERO.

1. Input M(x) (an n× n matrix of polynomials).

2

2. Pick random primes p1, . . . , pn between n2 and 2n2. (They need not be
distinct.)

3. For each i, 1 ≤ i ≤ n, pick a random ai ∈ {0, . . . , pi − 1}.

4. For each i, 1 ≤ i ≤ n, calculate di = DET (M(ai)) (mod pi). If for
some i, di 6= 0 then output NO with certainty. If for all i, di = 0 then
output YES (not certain).

If M(x) ∈ DETPOLYZERO then for all a, p M(a) ≡ 0 (mod p). Hence,
for all i, M(ai) ≡ 0 (mod pi). If M(x) /∈ DETPOLYZERO then it is unlikely
that M(a) ≡ 0 (mod p) (we omit a formal analysis).

Note 2.5 In the above algorithm, we use “mod p” so that the intermediate
values do not get so large that computing with them is no longer polynomial
in n. We pick random numbers so that an adversary cannot contrive a bad
input.

Exercise 2

1. Show that PRIMES is in R. (You may not use that PRIMES is known
to be in P. You may use the Web or any other non-organic source;
however, you must hand in a reasonably complete proof.)

2. Find a case in the literature where using randomization seems to im-
prove the performance of something.

We will need the notion of a randomized reduction.

Def 2.6 Let A and B be two sets. We say that A ≤r B if there exists a
function f computable in poly time (the reduction), and polynomials p, q
such that

x ∈ A → Pr|r|=p(n)(f(x, r) ∈ B) ≥ 1
q(n)

x /∈ A → Pr|r|=p(n)(f(x, r) /∈ B) = 1

(Think of r as being a random string.)

This does not look that useful since the probability of being right when
x ∈ A is small. But its usefulness emerges from the following theorem.

3

Theorem 2.7 If A ≤r B and B ∈ P then A ∈ R.

Proof:
Assume A ≤r B via the function f and polynomials p, q.

1. Input (x, r). Let n be such that |x| = n and let |r| = 2p(n)q(n). (We
denote r = r1r2 · · · r2q(n) where, for each i, |ri| = p(n).)

2. Compute f(x, r1), · · · , f(x, r2q(n)). For each i query f(x, ri) ∈ B. If
any of the answers are YES, then output YES. Otherwise output NO.

If x /∈ A then, for all i, f(x, ri) /∈ B hence the algorithm will (correctly)
say NO.

If x ∈ A then, for each i, Pr(f(x, ri) /∈ B) ≤ (1− 1
q(n)

). Hence

[Pr((∀i)[f(x, ri) /∈ B])] ≤ (1− 1
q(n)

)2q(n)

≤ (e−1/q(n))2q(n)

≤ (e−1)2

≤ 1
e2

≤ 1
4
.

Hence
Pr((∃i)[f(x, ri) ∈ B]) ≥ 1− 1

4
= 3

4
.

This establishes the desired result.

Exercise 3 Show that if A ≤r B and B ∈ R then A ∈ R.

3 Our Plan

Given a formula φ we want to produce a formula φ′ such that

φ ∈ SAT → #(φ′) = 1 with high probability;
φ /∈ SAT → #(φ′) = 0.

We view a formula as a set of satisfying assignments. Hence we want to
map this set to a much smaller set. How do computer scientists map large
sets to small sets? By using Hash Functions! The next section has all we
will need.

4

4 Hash Functions

If a set is ‘large’ then a randomly chosen hash function (which we assume is
fairly uniform) is quite likely to map some element to some fixed element.
If a set is ‘small’ then this is unlikely. In particular, if a random string r is
interpreted as a random hash function and A is large, then it is quite likely
that some element of A maps to 0k.

Def 4.1

1. A sample space is the set of things that could happen. In our case it
will be the set of possibly hash functions that could be produced.

2. A random variable is a mapping from the sample space to numbers.
In our case it will be mapping the hash function h to the number
|{x | h(x) = 0k}|.

3. If S is a random variable then E(S) is its expected value and V ar(S)
is its variance. It is known that V ar(S) = E((S − E(S))2) = E(S2)−
E(S)2.

Important convention: Whenever we have a 0-1 valued matrix apply to a
vector we do all of the calculations mod 2.

Lemma 4.2 Let k, n ∈ N. Let X ⊆ {0, 1}n. Assume 0n /∈ X. Consider the
following random variable: Pick a random k × n 0-1 valued matrix M .

S = |{x ∈ X : M(x) = 0k}|.

Output S. Then E(S) = 2−k|X| and V ar(S) ≤ 2−k|X|. (Note that neither
E(S) nor V ar(S) depends on n, just on k and |X|.)

Proof: Before looking at E(S) and V ar(S) we will need to look at E of
some easier random variables

Let x, y ∈ X. Let Rx be the random variable

Rx =

{
1 if M(x) = 0k

0 if M(x) 6= 0k.
(1)

Let Ry be similar.

5

Let Mi(x) be the ith element of the vector M(x).

E(Rx) = Pr(M(x) = 0k) · 1 + Pr(M(x) 6= 0k) · 0;
E(Rx) = Pr(M(x) = 0k);

E(Rx) =
∏k

i=1 Pr(Mi(x) = 0).

Recall that x is fixed and that x 6= 0n. The probability that hi(x) = 0
can be phrased as follows: What is the probability that a randomly chosen
y will make x · y ≡ 0 (mod 2)? We leave it as an easy exercise that this is 1

2
.

Hence
E(Rx) =

∏k
i=1 Pr(Mi(x) = 0) = 1

2k
.

The exact same calculation shows that
E(R2

x) = 1
2k

. (For any 0-1 valued random variable Z, E(Z) = E(Z2).)
We now compute E(RxRy).

E(RxRy) = Pr(M(x) = 1 ∧M(y) = 1) · 1 + Pr(M(x) = 0)Pr(M(y) = 1) · 0+
Pr(M(x) = 1)Pr(M(x) = 0) · 0 + Pr(M(x) = 0)Pr(M(x) = 0) · 0

= Pr(M(x) = 1)Pr(M(y) = 1)
= 1

2k
1
2k

= 1
4k

We are now ready to tackle E(S) and V ar(S). Note that S =
∑

x∈X Rx.

E(S) = E(
∑
x∈X

Rx) =
∑
x∈X

E(Rx) =
1

2k
|X|.

We now look at V ar(S). Recall that V ar(S) = E(S2)− (E(S))2.

E(S2) = E((
∑

x∈X Rx)(
∑

y∈X Ry));

=
∑

x∈X
∑

y∈X E(RxRy);

=
∑

x∈X E(R2
x) +

∑
x 6=y E(RxRy);

=
∑

x∈X
1
2k

+
∑

x 6=y
1
4k

;

= 1
2k
|X|+ 1

4k
|X|(|X| − 1);

V ar(S) = E(S2)− (E(S))2

= 1
2k
|X|+ 1

4k
|X|(|X| − 1)− 1

4k
|X|2

= 1
2k
|X|+ 1

4k
|X|2 − 1

4k
|X| − 1

4k
|X|2

= 1
2k
|X| − 1

4k
|X|

≤ 1
2k
|X|

6

5 If PARITYSAT ∈ P Then NP = R

Def 5.1 Let ` ∈ N. Then SAT` is

{φ : 1 ≤ #(φ) ≤ `}.

We will first show SAT ≤r SAT12 and then use this in our reduction
SAT ≤r PARITYSAT. The reason we use SAT12 (as opposed to SAT17 or
something else) will become evident later.

We use the following lemma which is Chebyshev’s inequality. We do not
present a proof.

Lemma 5.2 If S is any random variable and a > 0 then
Pr(|S − E(S)| ≥ a) < V ar(S)

a2
.

Intuitively this is saying that the probability that S is far away from E(S)
is small, and how small depends on V ar(S).

Lemma 5.3 SAT ≤r SAT12.

Proof:
Here is the randomized reduction.

1. Input φ(~x). Let n be the number of variables in φ.

2. Evaluate φ(~0). If equals TRUE then output x (which is a formula in
SAT12 and stop. If FALSE then goto next step. Note that if X is the
set of satisfying assignments for φ then 0n /∈ X.

3. Pick a random k ∈ {0, . . . , n− 1} (uniformly).

4. Pick a random k × n 0-1 valued matrix M .

5. Output the Boolean formula ψ(~x) = φ(x) ∧ M(x) = 0k. (This can
easily be written as a Boolean formula of size poly in n.)

Clearly if φ /∈ SAT then ψ /∈ SAT12.
Assume φ ∈ SAT. We show that the Pr(ψ ∈ SAT12) ≥ 1

2n
. There are two

cases.

Case 1: #(φ) ≤ 12. If k is assigned to 0 at random then φ = ψ ∈ SAT12.
The probability that k = 0 is 1

n
≥ 1

2n
.

7

Case 2: #(φ) ≥ 13. Let m be such that 2m < #(φ) ≤ 2m+1. (Note that
m ∈ {3, . . . , n − 1}.) We look at what happens if k = m − 2. (Note that
m − 2 ∈ {1, . . . , n − 3}.) Let X be the set of satisfying assignments of φ.
Recall that 0n /∈ X. We have

2m < |X| ≤ 2m+1.

We are picking a random hash function h : {0, 1}n → {0, 1}k. Let

S = |{x ∈ X : h(x) = 0k}|.

By Lemma 4.2 we know that

E(S) = 2−k|X| = 2−(m−2)|X|

and
V ar(S) ≤ 2−(m−2)|X|.

Hence
2−(m−2)+m < E(S) ≤ 2−(m−2)+m+1,

so
4 < E(S) ≤ 8

and
V ar(S) < 8.

We want Pr(S ∈ {1, . . . , 12}). This is 1− Pr(S /∈ {1, . . . , 12}).
So what is Pr(S /∈ {1, . . . , 12})?
Note that
S /∈ {1, . . . , 12} → (S = 0) ∨ (S ≥ 13)
Since E(S) ≥ 4, S = 0 → |S − E(S)| ≥ 4.
Since E(S) ≤ 8, S ≥ 13 → |S − E(S)| ≥ 5.
Hence
S /∈ {1, . . . , 12} → (S = 0) ∨ (S ≥ 13) → |S − E(S)| ≥ 4.
Hence

Pr(S /∈ {1, . . . , 12}) ≤ Pr(|S − E(S)| ≥ 4).

By Chebyshev’s inequality

Pr(|S − E(S)| ≥ 4) ≤ V ar(S)

42
≤ 8

16
=

1

2
.

8

So Pr(S ∈ {1, . . . , 12}) > 1 − 1
2

= 1
2
. Hence, given that k = m − 2 we

have Pr(ψ ∈ {1, . . . , 12}) ≥ 1
2
. The probability that k = m− 2 is 1

n
. Hence

Pr(ψ ∈ SAT12) ≥ 1
2n

.

Theorem 5.4 SAT ≤r PARITYSAT.

Proof:
In this theorem we use capital letters for vectors of variables. X1 <

· · · < Xm is the Boolean formula that is true iff, in lexicographic order,
X1 < · · · < Xm.
RANDOMIZED REDUCTION

1. Input(φ).

2. Apply the transformation from Lemma 5.3 to get a Boolean formula
ψ. Note that

φ ∈ SAT → ψ ∈ SAT12 with probability ≥ 1
2n

;
φ /∈ SAT → ψ /∈ SAT12.

3. Pick a random m ∈ {1, . . . , 12}.

4. Output

φ′ = ψ(X1) ∧ ψ(X2) ∧ · · · ∧ ψ(Xm) ∧ (X1 < · · · < Xm).

END OF RANDOMIZED REDUCTION
If φ /∈ SAT then ψ /∈ SAT and therefore φ′ /∈ SAT. Hence #(φ′) = 0 ≡ 0

(mod 2), so φ′ /∈ PARITYSAT.
Assume φ ∈ SAT. Then then with probability 1

2n
, #(ψ) ∈ {1, . . . , 12}.

There are 12 cases, but we can make them all into one case.
Assume #(ψ) = i ∈ {1, . . . , 12}. If m = i then ψ has m different sat-

isfying assignments which we order lexicographically as B1 < · · · < Bm.
Note that φ′(B1, . . . , Bm) is true, and is the only satisfying assignment for
φ′. Hence #(φ′) = 1 ≡ 1 (mod 2). Hence if m = i then φ′ ∈ PARITYSAT.
The probability that m = i is 1

12
. The probability that ψ ∈ SAT12 is ≥ 1

2n
.

Hence the probability that φ′ ∈ PARITYSAT is ≥ 1
24n

.

9

Corollary 5.5

1. If PARITYSAT ∈ P then NP = R.

2. If PARITYSAT ∈ R then NP = R.

Proof: We obtain a by combining Theorem 2.7 and 5.4. We obtain b by
combining Exercise 3 and 5.4.

6 Promise Problems

The reduction from Theorem 5.4, SAT ≤r PARITYSAT, actually showed
SAT ≤r SAT1. This result is not that interesting because of the following
easy exercise.

Exercise 4 Show that if SAT1 ∈ P then SAT ∈ P.

Let us look at the reduction SAT ≤r SAT1 more carefully.
We actually have
φ ∈ SAT→ φ′ ∈ SAT1 probability ≥ 1

2n

φ /∈ SAT → φ′ /∈ SAT .
So if φ′ is the output then, with probability ≥ 1

2n
, #(φ′) ∈ {0, 1}.

This motivates the following definition.

Def 6.1 A promise problem is a pair (A,PR) where both A and PR are
subsets of Σ∗. PR is refereed to as the promise. The promise problem
(A,PR) is in P if there exists a poly time algorithm ALG such that

PR(x) = 1→ ALG(x) = A(x).
Note that we do not care what ALG(x) does if PR(x) = 0.

By using Theorem 5.4 and the fact that the output φ′ of the reduction
satisfies (with high probability) the promise #(φ) ∈ {0, 1}, we can obtain
the following.

Theorem 6.2 Let PR(φ) be the promise that #(φ) ∈ {0, 1}. If the promise
problem (SAT1, PR) can be solved in P then NP = R.

10

References

[1] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem:
Its Structural Complexity. Progress in Theoretical Computer Science.
Birkhauser, Boston, 1993.

[2] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Com-
puter and System Sciences, 49:149–167, 1994. Prior version in FOCS88.
Full Version at http://www.math.ias.edu/~avi/PUBLICATIONS/.

[3] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique
solutions. Theoretical Computer Science, 47:85–93, 1986. Earlier version
in STOC85.

11

