
Notes on Prob. Checkable Proof Systems (PCP)
William Gasarch

1 Introduction

Recall the following definition.

Def 1.1 A ∈ NP if there exists a polynomial predicate B such that

A = {x : (∃py)[B(x, y)]}.

We want to rewrite this

Def 1.2 M () is an Oracle Turing Machine- Random access (henceforth OTM-
RA) is an Oracle Turing Machine where the oracle is a string of bits and the
requests for the bits is made by writing down the address of the bit. By
convention, if the string is s long and a query is made for bit t > s then
the answer is 0. We denote a computation with oracle string y by My(x).
A POTM-RA is an OTM-RA that runs in polynomial time. Note that a
POTM-RA can use a string of length 2poly since it can write down that it
wants bit position (say) 2n2

. with n2 bits.

The following is an alternative definition of NP.

Def 1.3 A ∈ NP if there is a POTM-RA M () such that
x ∈ A→ (∃py)[My(x) = 1]
x /∈ A→ (∀py)[My(x) 6= 1]

If x ∈ A then we think of y as being the EVIDENCE that x ∈ A. This
evidence is short (only p(|x|) long) and checkable in poly time. Note that
the computation of My(x) may certainly use all of the bits of y. What if we
restrict the number of bits of the oracle it can look at?

Def 1.4 A q(n)-query POTM-RA M () is a POTM-RA where, on input x of
length n, makes at most q(n) bit queries.

Limiting the number of queries would seem to weaken the machines abil-
ity. To counter this we will also allow the machine to be randomized.

1

Def 1.5 Let q(n) and r(n) be monotone increasing functions from N to N and
ε(n) be a monotone decreasing function from N to [0, 1]. A ∈ PCP (q(n), r(n), ε(n))
if there exists a q(n)-query POTM-RA M () such that, for all n, for all
x ∈ {0, 1}n, the following holds.

x ∈ A→ (∃y)[Pr|z|=r(n)(M
y(x, r) = 1) = 1]

x /∈ A→ (∀y)[Pr|z|=r(n)(M
y(x, r) = 1) ≤ ε(n)]

Note 1.6

1. The queries are made adaptively. This means that the second question
asked might depend on the answer to the first. Hence if My(x, z) asks
q(n) questions then the total number of questions possible to ask is
2q(n) − 1. Since there are 2r(n) values of z there are a total of roughly
2q(n)+r(n) queries that can be asked. Hence we can take |y| = 2q(n)+r(n).

2. The string that you are making bit-queries to can be very long. If the
machine is poly time then the string can be exponentially long since to
specify a bit takes only poly length. For example, asking for the 1024th
bit takes NOT 1024 steps, but only 10 steps (writing down 1024 it base
2).

Example 1.7 SAT is in PCP (n, 0). The y value is the satisfying assign-
ment.

It is known that SAT ∈ PCP (O(1), O(log n)). This was first shown by
[1], though this made much use of [2]. We will not show this proof; however,
we will show some weaker results that convey some of the ideas from the
proof.

2 An example

We show that GI is in PCP (O(1), n0(1), 1/4). We first show that GI is in
AM with private coins and then use the ideas of this protocol to obtain the
PCP result. We do not bother defining “AM with private coins” as we are
just using it to motivate the PCP for GI.

GI is in Private Coin AM .

2

1. Input(G,H).

2. Arthur flips two coins. The two sides of the coins are G and H. Let the
flips be J1, J2. (so J1J2 ∈ {GG,GH,HG,HH}. Arthur flips 2n log n
coins to obtain permutations of the vertices of J1 and J2. Permute the
graphs as such to obtain J ′1, J

′
2. Arthur sends (J ′1, J

′
2).

3. Merlin sends back either GG,GH,HG,HH.

4. If Arthur sees that Merlin’s response matches J1J2 then he accepts.
Else he rejects.

If G 6≡ H then clearly Merlin can tell which graph is which. If G ≡ H
then Merlin has only a 1/4 chance of getting it right.

The main idea behind PCP is that Merlin’s answers are declared ahead
of time to all possible questions.

If G 6≡ H then the following rather large y will be the string that Arthur
queries. The string is a matrix doubly indexed by ALL graphs on n vertices.
The entry indexed by (L1, L2) has the following:

1. 100 if L1 ≡ G and L2 ≡ G.

2. 101 if L1 ≡ G and L2 ≡ H.

3. 110 if L1 ≡ H and L2 ≡ G.

4. 111 if L1 ≡ H and L2 ≡ H.

5. 000 if none of the above.

We now describe the PCP protocol.

1. Input(G,H).

2. Arthur flips two coins. The two sides of the coins are G and H. Let the
flips be J1, J2. (so J1J2 ∈ {GG,GH,HG,HH}. Arthur flips 2n log n
coins to obtain permutations of the vertices of J1 and J2. Permute the
graphs as such to obtain J ′1, J

′
2. Arthur makes the query (J ′1, J

′
2) to the

string y. (This is really asking about 3 bits.)

3. If the answer is correct then accept. Else reject.

3

If G ≡ H then clearly the string y described above works.
If G 6≡ H then any string that you use has probability 1/4 of getting the

right answer.
Note that this took 3 bits queries, 2n log n random coin flips, will succeed

with prob 1 if G 6≡ H, and will succeed with prob 1/4 if G ≡ H.

3 Arithmetician of SAT

Given a 3-SAT formula we will create an arithmetic expression for it. This
will differ from other ways you may have seen to do this.

1. We replace variable x with 1− x.

2. We replace x with x.

3. We replace OR with ×.

4. We replace AND with +.

For example
(v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v4 ∨ v5) ∧ (v0 ∨ v4 ∨ v6)
becomes
(1− v1)v2(1− v3) + v1(1− v4)v5 + v0v4(1− v6).
Why is this a good thing to do? Note that a satisfying assignment will

make this expression 0, while a non-satisfying assignment will make this
expression nonzero. Hence we can rephrase 3-SAT as the search for roots of
an equation.

We need a change of point of view. If there are n variables then we can
represent them with log n bits each. In the above example we have 7 variables
so we can think of them as v000, v001, v010, v011, v100, v101, v110. We go further-
we think of the assignment as being a function of 3 (more generally log n)
variables. So A(i, j, k) will be the value of vijk (ijk is a number in base 2).
We now rephrase the question above:

Is there a function A : {0, 1}3 → {0, 1} such that

(1− A(0, 0, 1))A(0, 1, 0)(1− A(0, 1, 1)) +
A(0, 0, 1)(1− A(1, 0, 0))A(1, 0, 1) +
A(0, 0, 0)A(1, 0, 0)(1− A(1, 1, 0)) = 0

4

We would like to write this in another way.
Let χi be defined as follows:

1. χi will take 5 variables. The first 2 identify what clause it is referring
to. The last 3 identify what variable it cares about.

2.

χi(c1, c2; d1, d2, d3)

{
1 ifvd1d2d3 or vd1d2d3 is ith literal in clause c1c2

0 otherwise.

(1)

We view the clauses as clause 0, clause 1, and clause 2.

3. χi can be written as a polynomial in its variables. For example, in our
example,

χ3(0, 0; 0, 1, 1) = 1
χ3(0, 1; 1, 0, 1) = 1
χ3(1, 0; 1, 1, 0) = 1

χ3 is 0 on all other values. Note that

χ3(c1, c2; d1, d2, d3) is

(1−c1)(1−c2)(1−d1)d2d3+(1−c1)c2d1(1−d2)d3+c1(1−c2)d1d2(1−d3).

If there is a satisfying assignment then there is a way to set A such that
the following expression is 0 for ALL choices of variables (we will discuss this
after the expression).

χ1(0, 1, x1, x2, x3)χ2(0, 1, y1, y2, y3)χ3(0, 1, z1, z2, z3)×
(1− A(x1, x2, x3))A(y1, y2, y3)(1− A(z1, z2, z3))
+
χ2(1, 0, x1, x2, x3)χ2(1, 0, y1, y2, y3)χ2(1, 0, z1, z2, z3)×
A(x1, x2, x3)(1− A(y1, y2, y3)A(z1, z2, z3)+
+
χ3(1, 1, x1, x2, x3)χ3(1, 1, y1, y2, y3)χ(1, 1, z1, z2, z3)×
A(x1, x2, x3)A(y1, y2, y3)(1− A(z1, z2, z3))
Note that this expression could be written as a polynomial in
x1, x2, x3, y1, y2, y3, z1, z2, z3, y1, y2, y3
A(x1, x2, x3), A(y1, y2, y3), A(z1, z2, z3)

5

We denote this expression g(x1, . . . , z3, A(x1, . . . , z3)). (This is not quite
correct since A takes 3 variables, not 9.)
Claim 1: If the formula is satisfiable then there is a way to set A such that,
for ALL settings of the variables, the expression above is 0.

Set A to correspond to the satisfying assignment. For example, if v6 = T
then set A(1, 1, 0) = 1. For every clause, if the variables are set so that all
the χ’s are 1, then since A represents a satisfying assignment, the product
will be 0. If the variables are set so that some χ is 0, then the expression is
0.
Claim 2: If the formula is satisfiable then there is a way to set A such that,
for ANY set of 218 polynomials indexed by {0, 1}18, we have

1∑
x1=0

· · ·
1∑

t3=0

px1,...,t3g(x1, . . . , g3, A(x1, . . . , t3)) = 0

Claim 3: If the formula is not satisfiable then if 218 polys are picked at
random it is highly probable that there is no A such that

1∑
x1=0

· · ·
1∑

t3=0

px1,...,t3g(x1, . . . , g3, A(x1, . . . , t3)) = 0

(We do not prove this.)
UPSHOT: What we did for this formula can be done for any formula.

Given a formula φ(v1, . . . , vn) on n variables we can come up with an ex-
pression g(x1, . . . , xO(logn), A(x1, . . . , xO(logn))) that involves an unevaluated
A, such that

φ is satisfiable iff there is a way to set A such that, for all settings of
x1, . . . , xO(logn) g evaluates to 0.

It is likely that you just assumed the arithmetic involved took place over
the integers. We will actually do the arithmetic mod p for some p. In that
spirit we will also think of A as a map from F

O(logn)
p to Fp; however, we

will require that when restricted to {0, 1}O(logn) it will output an element of
{0, 1}. We will also require A to be of low degree.

For this exposition we will require A to be linear. That is, if you fix all
but one variable then its linear. (Actually affine- of the form ax+ b.) This is
NOT how the real proof goes. It is NOT the correct proof. But it will help
our exposition and the ideas.

6

4 A New Problem

Consider the following problem
Given f(x1, . . . , xL, A(x1, . . . , xL) we want evidence that there exists a

linear function A : FL
p to Fp such that strings of 0’s and 1’s map to {0, 1}

and

1∑
x1=0

1∑
x2=0

· · ·
1∑

xL=0

f(x1, . . . , xL, A(x1, . . . , xL)) = 0

The function f is known to the verifier. The values of A are not.
We write this as an PCP protocol. All queries made are assumed to be

queries to the oracle. If we ask for a value in Fp then this is actually log2 p
bit-queries. All arithmetic is done over a finite field to be named later or
never.

1. Input f(x1, . . . , xL, A(x1, . . . , xL)). Note that this is given symbolically—
A is not evaluated.

2. Let

LIN1(x) =
∑1

x2=0 · · ·
∑1

xL=0 f(x, x2 . . . , xL, A(x, x2, . . . , xL).

Note that LIN1 is linear. Ask for LIN1(0) and LIN1(1). If the sum of
the answers is not zero then reject. Otherwise goto the next step.

3. Pick a1 at random. Ask for the value of LIN1(a1). Since we already
know LIN1(0) and LIN1(1), and LIN1 is linear, we can, from that,
deduce LIN1(a1). Check if the answer the oracle gives is the same
answer we can derive for ourselves. If not then reject. If yes then goto
next step.

4. Let

LIN2(x) =
∑1

x3=0 · · ·
∑1

xL=0 f(a1, x, x3, . . . , xL, A(a1, x, x3, . . . , xL)).

Note that LIN2 is linear and we already know LIN2(0) + LIN2(1) =
LIN1(a1). Ask for the values of LIN2(0) and LIN2(1). If they do not
add up to LIN1(a1) then reject. Else goto the next step.

5. Pick a2 at random. Ask for the value of LIN2(a2). Since we already
know LIN2(0) and LIN2(1), and LIN2 is linear, we can, from that,

7

deduce LIN2(a2). Check if the answer the oracle gives is the same
answer we can derive for ourselves. If not then reject. If yes then goto
next step.

6. Get a1, a2, . . . , aL−1, aL, LIN1,LIN2, . . . ,LINL−2,LINL−1,LINL in a sim-
ilar fashion. In the last round also ask the oracle for A(a1, . . . , aL) as
a further check on the answer.

7. If there was never a reject, then accept.

Each stage the verifier asks O(1) questions and coin flips. There are O(L)
rounds. Hence there are O(L log2 p) queries and O(L) random coin flips. p
will be picked independent of L, so we will have O(log n) queries and O(log n)
random coin flips.

Why does this work? If there is a linear function A(x1, . . . , xL) such that

1∑
x1=0

1∑
x2=0

· · ·
1∑

xL=0

f(x1, . . . , xL, A(x1, . . . , xL)) = 0

then the oracle can easily be constructed and answer the questions hon-
estly.

If no such linear function A(x1, . . . , xL) exists then one of the two answers
given in the first round is false. Each round keeps testing this more and more
and eventually (with high probability) the lie will come out. An important
point is that its a fixed oracle, not a player who can plan things.

5 Putting it all together

PCP (O(log n), O(log n), 1/4) protocol for SAT.

1. Input φ(v1, . . . , vn).

2. Using the technique of Section 3 find an expression g in x1, . . . , xL
(where L = O(log n) such that

φ is satisfiable iff there is a linear function A : F
O(logn)
p → Fp (where

strings of 0’s and 1’s map to {0, 1}) such that, for all settings of
x1, . . . , xL ∈ {0, 1}, g is 0.

3. Pick 2L random polynomials indexed by {0, 1}L.

8

4. Using the technique of Section 4 to show that x1, . . . , xL∑1
x1=0 · · ·

∑1
xL=0 px1,...,xL

g(x1, . . . , xL, A(x1, . . . , xL)) = 0.

5. If this succeeds output YES, else NO.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof ver-
ification and intractability of approximation problems. Journal of the
ACM, 45, 1998. Prior version in FOCS92.

[2] S. A. S. Safra. Probabilistic checking of proofs: A new characterization
of NP. Journal of the ACM, 45, 1998. Prior version in FOCS92.

9

