Lower Bounds on Resolution Theorem Proving Via Games (An Exposition)

William Gasarch-U of MD
1. Stays Jukna’s book on Circuit complexity had the material.
3. Result itself is old; however this proof is new and wonderful.
Problem: Given a CNF-Formula $\varphi \notin SAT$ we want a proof that $\varphi \notin SAT$.

1. Need to define logical system rigorously.
2. Research Program: Show that in various Logic Systems cannot get a short proof.
RESOLUTION RULE

\[A \lor x \quad B \lor \neg x \]

\[\hline \]

\[A \lor B \]
Definition
Let $\varphi = C_1 \land \cdots \land C_L$ be a CNF formula. A *Resolution Proof that* $\varphi \notin SAT$, *is a sequence of clauses such that on each line you have either*

1. One of the C’s in φ (called an AXIOM).
2. $A \lor B$ where on prior lines you had $A \lor x$ and $B \lor \neg x$. Variable that is *resolved on* is x.
3. The last line has the empty clause.

EASY: If there is a Resolution Proof that $\varphi \notin SAT$ then $\varphi \notin SAT$.
Example

\[\varphi = x_1 \land x_2 \land (\neg x_1 \lor \neg x_2) \]

1. \(x_1 \) (AXIOM)
2. \(\neg x_1 \lor \neg x_2 \) (AXIOM)
3. \(\neg x_2 \) (From lines 1,2, resolve on \(x_1 \).)
4. \(x_2 \) (AXIOM)
5. \(\emptyset \) (From lines 3,4, resolve on \(x_2 \).)

DO IN CLASS ON BOARD AND THEN DO MORE EXAMPLES
Another Example

The AND of the following:

1. \(x_{11} \lor x_{12} \)
2. \(x_{21} \lor x_{22} \)
3. \(x_{31} \lor x_{32} \)
4. \(\neg x_{11} \lor \neg x_{21} \)
5. \(\neg x_{11} \lor \neg x_{31} \)
6. \(\neg x_{21} \lor \neg x_{31} \)
7. \(\neg x_{12} \lor \neg x_{22} \)
8. \(\neg x_{12} \lor \neg x_{32} \)
9. \(\neg x_{22} \lor \neg x_{32} \)
Another Example

The AND of the following:

1. \(x_{11} \lor x_{12} \)
2. \(x_{21} \lor x_{22} \)
3. \(x_{31} \lor x_{32} \)
4. \(\neg x_{11} \lor \neg x_{21} \)
5. \(\neg x_{11} \lor \neg x_{31} \)
6. \(\neg x_{21} \lor \neg x_{31} \)
7. \(\neg x_{12} \lor \neg x_{22} \)
8. \(\neg x_{12} \lor \neg x_{32} \)
9. \(\neg x_{22} \lor \neg x_{32} \)

This is Pigeonhole Principle: \(x_{ij} \) is putting \(i \)th pigeon in \(j \) hole!
Another Example

The AND of the following:

1. $x_{11} \lor x_{12}$
2. $x_{21} \lor x_{22}$
3. $x_{31} \lor x_{32}$
4. $\neg x_{11} \lor \neg x_{21}$
5. $\neg x_{11} \lor \neg x_{31}$
6. $\neg x_{21} \lor \neg x_{31}$
7. $\neg x_{12} \lor \neg x_{22}$
8. $\neg x_{12} \lor \neg x_{32}$
9. $\neg x_{22} \lor \neg x_{32}$

This is Pigeonhole Principle: x_{ij} is putting ith pigeon in j hole! Can’t put 3 pigeons into 2 holes! DO RES PROOF IN CLASS.
Let $n < m$. n is NUMBER OF HOLES, m is NUMBER OF PIGEONS. x_{ij} will be thought of as Pigeon i IS in Hole j.

Definition

PHP_n^m is the AND of the following:

1. For $1 \leq i \leq m$

 $$x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$$

 (Pigeon i is in SOME Hole.)

2. For $1 \leq i_1 < i_2 \leq n$ and $1 \leq j \leq m$

 $$\neg x_{i1j} \lor \neg x_{i2j}$$

 (Hole j does not have BOTH Pigeon i_1 and Pigeon i_2.)

NOTE: PHP_n^m has nm VARS and mn^2 CLAUSES.
An Assignment is an $m \times n$ array of 0’s and 1’s.

Example: $m = 4$, $n = 3$.

\[
\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{array}
\]

$x_{12} = x_{23} = x_{13} = x_{42} = 1$. All else 0. Violates PHP since have $x_{12} = x_{42} = 1$.
1) Have two 1’s in a column.

```
   0 1 0
   0 0 1
   1 0 0
   0 1 0
```

2) Have an all 0’s row.

```
   0 1 0
   0 0 1
   0 0 0
   1 0 0
```
\[\varphi(x_1, \ldots, x_v) = C_1 \land \cdots \land C_L \]

If \(\varphi \not\in \text{SAT} \) then construct Resolution Proof as follows:

1. Form a **DECISION TREE** with nodes on level \(i \) labeled \(x_i \).
2. Every leaf is a complete assignment. Output least indexed clause \(C \) that is 0.
3. Turn Decision Tree **UPSIDE DOWN**, its a Res. Proof. **DO EXAMPLE IN CLASS**
4. **NOTE:** Can always do roughly \(2^v \) size proof.
5. **NOTE:** The Resolution Proofs are **TREE-Resolution**.
1. Informally- a Tree Resolution proof is one where if written out looks like a tree.

2. Formally- a Tree Resolution proof is one where any clause in the proof is used at most once.
Assume $n < m$.

1. PHP^m_n always has a size roughly 2^{nm} Tree Resolution Proof.
2. We show $2^{n/2}$ size is REQUIRED. THIS IS POINT OF THE TALK!!!!!! (Better is known- roughly $2^{n \log n}$, but that is slightly harder.)
3. The lower bound is IND of m.
4. There is an upper bound of roughly $2^{n \log n}$: Resolution and the weak pigeonhole principle, By Buss and Pitassi. Proceedings of the 1997 Computer Science Logic Conference.
Parameters of the game: $p \in \mathbb{N}$,

$$\varphi = C_1 \land \cdots \land C_L \notin SAT.$$

Do the following until a clause is proven false:

1. **PROVER** picks a variable x that was not already picked.
2. **DEL** either
 2.1 Sets x to 0 or 1, OR
 2.2 Defers to **PROVER** .
 2.2.1 If **PROVER** sets $x = 0$ then **DEL** gets one points.
 2.2.2 If **PROVER** sets $x = 1$ then **DEL** gets one points.

At end if **DEL** has p points then he **WINS**; otherwise **PROVER** **WINS**. HAVE THEM PLAY THE GAME WITH PHP.
We assume that PROVER and DEL play perfectly.

1. **PROVER wins** means **PROVER has a winning strategy**.
2. **DEL wins** means **DEL has a winning strategy**.
Lemma

Let $p \in \mathbb{N}$, $\varphi \notin \text{SAT}$. If φ has a Tree Res proof of size $< 2^p$ then PROVER wins.

Proof.

PROVER Strategy:

1. Initially T is res tree of size $< 2^p$ and DEL has 0 points.
2. PROVER picks x, the LAST var resolved on.
3. If DEL sets x DEL gets no points.
4. If DEL defers then PROVER sets to 1 or 0- whichever yields a smaller tree. NOTE: One of the trees will be of size $< 2^{p-1}$. DEL gets 1 point.
5. Repeat: after ith stage will always have T of size $< 2^{p-i}$, and DEL has $\leq i$ points.
Recall:

Lemma
Let $p \in \mathbb{N}$, $\varphi \notin SAT$. If φ has a Tree Res proof of size $< 2^p$ then PROVER wins.

Contrapositive:

Lemma
Let $p \in \mathbb{N}$, $\varphi \notin SAT$. If DEL wins then EVERY Tree Resolution proof for φ has size $\geq 2^p$.

PLAN: Get AWESOME strategy for DEL when $\varphi = PHP^m_n$.

Lemma

Let $n \geq 2$. Let $n < m$. Let $\varphi = \text{PHP}^m_n$. There is a strategy for \text{DEL} that earns at least $\frac{n}{4}$ points.

KEY to STRATEGY FOR \text{DEL}:

1. \text{DEL} does NOT allow two 1’s in a column. EVER!!!!

2. \text{DEL} is wary of the all-0’s row. But not too wary. \text{DEL} puts a 1 in a row if PROVER has put many 0’s in that row.
PROVER has picked x_{ij}.

1. If there is a i' such that $x_{i',j} = 1$ then set $x_{i,j} = 0$. (DEL gets no points, but averts DISASTER.)

2. If the ith row has $\frac{n}{2}$ 0's that PROVER put there, and no 1's, then DEL puts a 1 (DEL gets no points, but DEL delays an all-0 row.)

3. Otherwise defer to PROVER (and get some points!).
ANALYSE STRATEGY

Games over when some row is ALL 0’s—say row i.

$$x_{i1} = x_{i2} = \cdots = x_{in} = 0.$$

WHO set them to 0? There are two cases, though the second yields more cases.

1. **PROVER** set $\geq \frac{n}{2}$ of the vars to 0. Then **DEL** gets $\geq \frac{n}{2}$ points. DONE!

2. **DEL** set $\geq \frac{n}{2}$ of the vars to 0. See next two slides.
ANALYSE STRATEGY-DELAYER SET \(\geq \frac{n}{2} \) **VARS TO 0**

\(DEL \) set \(\geq \frac{n}{2} \) of the vars to 0. There is only ONE reason \(DEL \) every sets a var to 0—when it was set there was a 1 in that column. So \(\frac{n}{2} \) of the columns have a 1 in them. WHO set them to 1?

1. \(PROVER \) set \(\geq \frac{n}{4} \) of those vars to 1. Then \(DEL \) gets \(\geq \frac{n}{4} \) points. DONE.

2. \(DEL \) set \(\geq \frac{n}{4} \) of those vars to 1. See next slide.
DEL set \(\geq \frac{n}{4} \) of the vars to 1. There is only ONE reason DEL every sets a var to 1—there are \(\frac{n}{2} \) vars in that row set to 0 by PROVER. So each of the \(\frac{n}{4} \) vars that DEL set to 1 imply \(\frac{n}{2} \) 0’s set by PROVER which implies \(\frac{n}{2} \) points for DEL. So DEL gets \(\geq \frac{n^2}{8} \) points. DONE.
DEL has winning strategy to get

$$\min\left\{ \frac{n}{2}, \frac{n}{4}, \frac{n^2}{8} \right\}$$

points. Since $n \geq 2$ this min is $\frac{n}{4}$.