Lower Bounds on Resolution Theorem Proving Via Games (An Exposition)

William Gasarch-U of MD

イロト イポト イヨト イヨト

- 1. Stays Jukna's book on Circuit complexity had the material.
- 2. Original source: Beyersdorff, Galesi, Lauria's paper A Lower Bound for the PHP in Tree-Like Resolution by Asymmetric Prover-Delayer Games. In IPL, 2010.
- 3. Result itself is old; however this proof is new and wonderful.

▲圖▶ ▲注▶ ▲注▶

- **Problem:** Given a CNF-Formula $\varphi \notin SAT$ we want a proof that $\varphi \notin SAT$.
 - 1. Need to define logical system rigorously.
 - 2. Research Program: Show that in various Logic Systems cannot get a short proof.

$A \lor x$ $B \lor \neg x$

$A \lor B$

William Gasarch-U of MD Lower Bounds on Resolution Theorem Proving Via Games (An

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─の < @

Definition

Let $\varphi = C_1 \land \dots \land C_L$ be a CNF formula. A *Resolution Proof that* $\varphi \notin SAT$, is a sequence of clauses such that on each line you have either

- 1. One of the C's in φ (called an AXIOM).
- A ∨ B where on prior lines you had A ∨ x and B ∨ ¬x.
 Variable that is *resolved on* is x.
- 3. The last line has the empty clause.

EASY: If there is a Resolution Proof that $\varphi \notin SAT$ then $\varphi \notin SAT$.

(日)(4月)(4日)(4日)(日)

- $\varphi = x_1 \wedge x_2 \wedge (\neg x_1 \vee \neg x_2)$
 - 1. x1 (AXIOM)
 - 2. $\neg x_1 \lor \neg x_2$ (AXIOM)
 - 3. $\neg x_2$ (From lines 1,2, resolve on x_1 .)
 - **4**. *x*₂ (AXIOM)
 - 5. \emptyset (From lines 3,4, resolve on x_2 .)

DO IN CLASS ON BOARD AND THEN DO MORE EXAMPLES

Another Example

The AND of the following:

- 1. $x_{11} \vee x_{12}$
- 2. $x_{21} \vee x_{22}$
- 3. $x_{31} \vee x_{32}$
- 4. $\neg x_{11} \lor \neg x_{21}$
- 5. $\neg x_{11} \lor \neg x_{31}$
- 6. $\neg x_{21} \lor \neg x_{31}$
- 7. $\neg x_{12} \lor \neg x_{22}$
- 8. $\neg x_{12} \lor \neg x_{32}$
- 9. $\neg x_{22} \lor \neg x_{32}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Another Example

The AND of the following:

- 1. $x_{11} \vee x_{12}$
- 2. $x_{21} \vee x_{22}$
- 3. $x_{31} \vee x_{32}$
- 4. $\neg x_{11} \lor \neg x_{21}$
- 5. $\neg x_{11} \lor \neg x_{31}$
- 6. $\neg x_{21} \lor \neg x_{31}$
- 7. $\neg x_{12} \lor \neg x_{22}$
- 8. $\neg x_{12} \lor \neg x_{32}$
- 9. $\neg x_{22} \lor \neg x_{32}$

This is Pigeonhole Principle: x_{ij} is putting *i*th pigeon in *j* hole!

Another Example

The AND of the following:

- 1. $x_{11} \vee x_{12}$
- 2. $x_{21} \vee x_{22}$
- 3. $x_{31} \vee x_{32}$
- 4. $\neg x_{11} \lor \neg x_{21}$
- 5. $\neg x_{11} \lor \neg x_{31}$
- 6. $\neg x_{21} \lor \neg x_{31}$
- 7. $\neg x_{12} \lor \neg x_{22}$
- 8. $\neg x_{12} \lor \neg x_{32}$
- 9. $\neg x_{22} \lor \neg x_{32}$

This is Pigeonhole Principle: x_{ij} is putting *i*th pigeon in *j* hole! Can't put 3 pigeons into 2 holes! DO RES PROOF IN CLASS.

Let n < m. *n* is NUMBER OF HOLES, *m* is NUMBER OF PIGEONS. x_{ij} will be thought of as Pigeon *i* IS in Hole *j*.

Definition

 PHP_n^m is the AND of the following:

```
1. For 1 \leq i \leq m
```

 $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$

(Pigeon *i* is in SOME Hole.)

2. For
$$1 \le i_1 < i_2 \le n$$
 and $1 \le j \le m$

$$\neg x_{i_1j} \lor \neg x_{i_2j}$$

(Hole j does not have BOTH Pigeon i_1 and Pigeon i_2 .)

NOTE: PHP_n^m has nm VARS and mn^2 CLAUSES.

An Assignment is an $m \times n$ array of 0's and 1's. Example: m = 4, n = 3.

 $x_{12} = x_{23} = x_{13} = x_{42} = 1$. All else 0. Violates PHP since have $x_{12} = x_{42} = 1$.

TWO WAYS TO VIOLATE PHP

1) Have two 1's in a column.

2) Have an all 0's row.

0	1	0
0	0	1
0	0	0
1	0	0

・ロン ・回と ・ヨン・

$$\varphi(x_1,\ldots,x_v)=C_1\wedge\cdots\wedge C_L$$

If $\varphi \notin SAT$ then construct Resolution Proof as follows:

- 1. Form a DECISION TREE with nodes on level *i* labeled x_i .
- 2. Every leaf is a complete assignment. Output least indexed clause *C* that is 0.
- 3. Turn Decision Tree UPSIDE DOWN, its a Res. Proof. DO EXAMPLE IN CLASS
- 4. NOTE: Can always do roughly 2^{ν} size proof.
- 5. NOTE: The Resolution Proofs are TREE-Resolution.

- 1. Informally- a Tree Resolution proof is one where if written out looks like a tree.
- 2. Formally- a Tree Resolution proof is one where any clause in the proof is used at most once.

소리가 소문가 소문가 소문가

Assume n < m.

- 1. PHP_n^m always has a size roughly 2^{nm} Tree Resolution Proof.
- We show 2^{n/2} size is REQUIRED. THIS IS POINT OF THE TALK!!!!! (Better is known- roughly 2^{n log n}, but that is slightly harder.)
- 3. The lower bound is IND of *m*.
- There is an upper bound of roughly 2^{n log n}: Resolution and the weak pigeonhole principle, By Buss and Pitassi. Proceedings of the 1997 Computer Science Logic Conference.

(日)(4月)(4日)(4日)(日)

Parameters of the game: $p \in N$,

$$\varphi = C_1 \wedge \cdots \wedge C_L \notin SAT.$$

Do the following until a clause is proven false:

- 1. PROVER picks a variable x that was not already picked.
- 2. DEL either
 - 2.1 Sets x to 0 or 1, OR
 - 2.2 Defers to PROVER .
 - 2.2.1 If PROVER sets x = 0 then DEL gets one points.
 - 2.2.2 If PROVER sets x = 1 then DEL gets one points.

At end if DEL has *p* points then he WINS; otherwise PROVER WINS. HAVE THEM PLAY THE GAME WITH PHP.

(4 回) (4 回) (4 回)

We assume that **PROVER** and **DEL** play perfectly.

- 1. PROVER wins means PROVER has a winning strategy.
- 2. *DEL* wins means *DEL* has a winning strategy.

イロン イヨン イヨン イヨン

Lemma

Let $p \in N$, $\varphi \notin SAT$. If φ has a Tree Res proof of size $< 2^p$ then *PROVER* wins.

Proof. PROVER Strategy:

- 1. Initially T is res tree of size $< 2^{p}$ and DEL has 0 points.
- 2. PROVER picks x, the LAST var resolved on.
- 3. If DEL sets x DEL gets no points.
- If DEL defers then PROVER sets to 1 or 0- whichever yields a smaller tree.NOTE: One of the trees will be of size < 2^{p-1}. DEL gets 1 point.
- Repeat: after *i*th stage will always have *T* of size < 2^{p−i}, and DEL has ≤ *i* points.

Recall:

Lemma

Let $p \in N$, $\varphi \notin SAT$. If φ has a Tree Res proof of size $< 2^p$ then *PROVER* wins.

Contrapositive:

Lemma

Let $p \in \mathbb{N}$, $\varphi \notin SAT$. If DEL wins then EVERY Tree Resolution proof for φ has size $\geq 2^{p}$.

PLAN: Get AWESOME strategy for **DEL** when $\varphi = PHP_n^m$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma

Let $n \ge 2$. Let n < m. Let $\varphi = PHP_n^m$. There is a strategy for DEL that earns at least $\frac{n}{4}$ points. KEY to STRATEGY FOR DEL:

- 1. DEL does NOT allow two 1's in a column. EVER!!!!
- 2. DEL is wary of the all-0's row. But not too wary. DEL puts a 1 in a row if PROVER has put many 0's in that row.

・ 同 ト ・ ヨ ト ・ ヨ ト …

PROVER has picked *x_{ij}*.

- 1. If there is a *i*' such that $x_{i',j} = 1$ then set $x_{i,j} = 0$. (DEL gets no points, but averts DISASTER.)
- 2. If the *i*th row has $\frac{n}{2}$ 0's that PROVER put there, and no 1's, then DEL puts a 1 (DEL gets no points, but DEL delays an all-0 row.)
- 3. Otherwise defer to PROVER (and get some points!).

(本間) (本語) (本語) (語)

Games over when some row is ALL 0's— say row *i*.

$$x_{i1} = x_{i2} = \cdots = x_{in} = 0.$$

WHO set them to 0? There are two cases, though the second yields more cases.

- 1. *PROVER* set $\geq \frac{n}{2}$ of the vars to 0. Then *DEL* gets $\geq \frac{n}{2}$ points. DONE!
- 2. *DEL* set $\geq \frac{n}{2}$ of the vars to 0. See next two slides.

イロト イポト イヨト イヨト 二日

DEL set $\geq \frac{n}{2}$ of the vars to 0. There is only ONE reason *DEL* every sets a var to 0– when it was set there was a 1 in that column. So $\frac{n}{2}$ of the columns have a 1 in them. WHO set them to 1?

- 1. *PROVER* set $\geq \frac{n}{4}$ of those vars to 1. Then *DEL* gets $\geq \frac{n}{4}$ points. DONE.
- 2. *DEL* set $\geq \frac{n}{4}$ of those vars to 1. See next slide.

イロト イポト イヨト イヨト 二日

DEL set $\geq \frac{n}{4}$ of the vars to 1. There is only ONE reason *DEL* every sets a var to 1– there are $\frac{n}{2}$ vars in that row set to 0 by *PROVER*. So each of the $\frac{n}{4}$ vars that *DEL* set to 1 imply $\frac{n}{2}$ 0's set by *PROVER* which implies $\frac{n}{2}$ points for *DEL*. So *DEL* gets $\geq \frac{n^2}{8}$ points. DONE.

・ 同 ト ・ ヨ ト ・ ヨ ト

DEL has winning strategy to get

$$\min\{\frac{n}{2},\frac{n}{4},\frac{n^2}{8}\}$$

points. Since $n \ge 2$ this min is $\frac{n}{4}$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト