Results that Relativize
Exposition by William Gasarch

1 Oracle Turing Machines

Recall that Turing Machines can computer LOTS of stuff and are often denoted M.
We want to define a Turing Machine that can also ask questions to a set A and get
back the answers instantly. We will not define this formally (which would be easy)
but note a few things in our informal definition

Def 1.1 An Oracle Turing Machine is a device MO which can do what a Turing
machine does but also has an extra tape (an oracle tape) which is write-only and on
which it can write questions. Writing a question will take time that is the length of
the question. How can these devises be used? We need not just an input x but also
an oracle A which is a set of strings. It makes no sense to say “What is M0 (x)?”.
But we can say, for a string  and a set A, what is M“4(z). As with ordinary Turing
Machines it may accept, reject, take blah-blah steps, or not halt at all. Note that an
Oracle TM is defined ind. of the oracle you are going to use.

Def 1.2 Let T'(n) be a computable function (think of it as increasing). Let A C ¥*.
X is in DTIMEA(T(n)) if there is a OTM M0 such that M# decides X and also,
for all z, M4 (z) halts in time < T'(|z|).

Def 1.3 A is in P4 if there is a polynomial p(n) such that A is in DTIME*(p(n)).

2 Time and Space Classes

Def 2.1 Let T(n) be a computable function (think of it as increasing). X is in
DTIMEA(T(n)) if there is a MULTITAPE OTM MY such that M# decides X and
also, for all x, M (z) halts in time < T'(|z]). Convention: By DTIM E*(T(n)) we
really mean DTIME(O(T(n)). They are actually equivalent by having your OTM
just take bigger steps.

Note that this is unfortunately machine dependent. It is possible that if we allow
2-tapes instead of one it would change how much you can do. We won’t have to deal
with this much since we will usually define classes in terms of multi-tape machines,
and we will allow some slack on the time bound, like: DTTM E4(n®W).
It is known that, for all A, a Multitape DTIM E4(T(n)) machine can be simulated
by (1) a 1-tape DTIM E4(T (n)?)OTM, and also0 (2) a 2-tape DTTM E*(T(n)log T(n))OTM.



Def 2.2 Let S(n) be a computable function (think of it as increasing). X is in
DSPACEA(S(n)) if there is a OTM MU such that M4 decides X and also, for all
x, M (z) only uses space S(|z|). Convention: By DSPACE"(S(n)) we really mean
DSPACEA(O(S(n)). They are actually equivalent by having your OTM just take
bigger steps. Convention: When dealing with space classes we will have an input
tape which is read-only and a separate worktape. When dealing with space-bounded
OTMs computing functions we will also have a write-only output tape.

It is known that, for any A, a Multitape DSPACE*(S(n)) machine can be sim-
ulated by a 1-tape DSPACE*(S(n))OTM.

Def 2.3 Let T(n) be a computable function (think of it as increasing). X is in
NTIMEA(T(n)) if there is a Nondet OTM M such that M decides X and also, for
all z, M“(x), on any path, halts in time < T'(|z|). Convention: By NTIME*(T(n))
we really mean NTIMEA(O(T(n)). They are actually equivalent by having your
OTM just take bigger steps.

Def 2.4 Let S(n) be a computable function (think of it as increasing). X is in
NSPACEA(S(n)) if there is a Nondet OTM MO such that M4 decides X and
also, for all x, M#(x), on any path, only uses space < S(|z|). Convention: By
NSPACEA(S(n)) we really mean NSPACE*(O(S(n)). They are actually equiva-
lent by having your OTM just take bigger steps.

Def 2.5 For all of the definitions below, 1-tape and multitape are equivalent. This
is important in the proof of Cooks theorem and later in the proof that a particular
lang is EXPSPACE complete and hence not in P.

1. PA = DTIME*(n°W),

2. NPA = NTIMEA(n°W).

3. EXPA = DTIMEA(2"°").

4. NEXP4 = NTIMEA(2""").

5. LA = DSPACE*(O(logn)).

6. NLA = NSPACE*(O(logn)).

7. PSPACEA = DSPACE#(n°W).

8. EXPSPACE* = DSPACEA(2"°").

9. NEXPSPACE* = NSPACEA(2""").



e The definition of NP4 is equivalent to the following one: X € NP4 if there
exists B € P4 such that
X =A{z | (Fy)l(z,y) € B]}.

e The definition of Relativized space (e.g., L) requires some care because of the
question of— do you count the oracle tape or not? We will come back to this
question later.

3 Easy Relations Between Classes

The following theorem is trivial.

Theorem 3.1 Let T'(n) and S(n) be computable functions (think of as increasing).
Let A be any set.

1. DTIMEX(T(n)) € NTIMEX(T(n)).

2. DSPACE*(S(n)) C NSPACE*(S(n)).
3. DTIME*(T(n)) C DSPACEA(T(n)).

4. NTIMEA(T(n)) € NSPACE*(T(n)).
The following theorem is easy but not trivial.

Theorem 3.2 Let T'(n) and S(n) be computable functions (think of as increasing).
Let A be any set.

1. NTIMEA(T(n)) C DTIMEA(2°T™M)). (Just simulate ALL possible paths.)

2. NTIMEA(T(n)) C DSPACEA(O(T(n))). (Just simulate ALL possible paths-
keep a counter for which path you are simulating.)
4 Sophisticated Relations Between Classes
The following theorem has two parts. They are on your HW.
Theorem 4.1 Let T'(n) and S(n) be computable functions (think of as increasing).
1. NSPACE*(S(n)) € DSPACE*(O(S(n)?))

2. NSPACEA(O(S(n))) is closed under complementation.



Note 4.2 The above theorem requires a modification of the def of NSPACEA(S(n)).
We omit discussion of this since but note that it was part of Dr. Gasarch’s PhD thesis.

What do we know about NL ? Using the above we get

NSPACE*(logn) € DSPACE*((logn)?)) C DTIME*(21°")".

Can we do better? YES! (MAYBE- the theorem below needs some carefully
reworking of the def of NLA.)

Theorem 4.3 NLA C P4,

Proof: Let X € NLA via OTM M*. Given x we want to determine if SOME
path in M“(x) goes to an accept state.

We will assume M# has 1 worktape. The modification for many tapes are easy.

A configuration (henceforth config) is a snapshot of the WORKTAPE ONLY. We
also include the state (by convention the square we are looking at will be to the states
left). Given a config and the input tape, one can determine which configurations you
might goto in one step.

Write down all of possible config. There are only 290°¢™) of them which is some
poly, say n°. Consider them to be nodes of a graph. We draw a directed graph from
u to v if from u you CAN go to v in one step (note that this depends on both u and

x € X iff there is a path from the start config to an accept config in the graph.
This can be determined in time poly in the size of the graph which is poly in n¢ so

poly. 1

5 Time and Space Hierarchy Theorems

Important Note: Imagine doing the following: Take a list of OTMs ]\/[1()7 MQO, e
and then bound M by T(n). That is, when you run M if it has not halted by
T'(|z|) steps then shut it off and declare its answer to be 0. To save on notation we
will also call this list

MY, MD, MY

KEY- if a set is in DTIM E(T(n) then there is an i such that M decides it in
time 7'(n).

KEY- if M decides a set then it is in DTIME*(T(n)).

Hence we have a list that represents all of DTIM E“(T(n)).

Does more time help? YES but the proof involves some details we will skip.

Theorem 5.1 (The Time Hierarchy Theorem) For all T(n) there is a set in DTIM E“(T(n)log T(n)))
that is NOT in DTIME*(T(n)).



Proof:

Let M, M3, ... represent all of DTIM E*(T(n)) as described above.

We construct a set X to NOT be in DTIMEA(T(n))P. We will want X and
to DISAGREE with M{!, to DISAGREE with M;!, etc. Lets state this in terms of
REQUIREMENTS

R;: X and M7 differ on some string.

We want X to satisfy all of these requirements.

Here is our algorithm for X. It will be a subset of 0*.

1. Input 0%

2. Run M7 (0%). If the results is 1 then output 0. If the results is 0 then output 1.

Note that, for all i, M; and X DIFFER on 0°. Hence every R; is satisfied. There-
fore A ¢ DTTIMEA(T(n)).

How do we get A € DTIMEA(T(n))logT(n))? It is KNOWN that any multitape
DTIMEA(T(n)) OTM can be SIMULATED by a 2-tape OTM in time T'(n) log T'(n).
So we use this to run M (0%) in the algorithm. The entire algorithm can then be one
in time T'(n)logT'(n). 1

The following theorem is proved similarly:

Theorem 5.2 (The Space Hierarchy Theorem) Let Sy and Sy be computable func-
tions (think of them as increasing). Assume lim, .o 2™ = 0o, Then DSPACE(Sy(n))s C

Sa(n)
DSPACE(S,(n)).

6 So What Of It?

All of the results in the last section relativize. That is, if blah blah P, NP, EXP is
true then, for all A, blah blah P4, NP4, EX P4 is true.

Intuitively what the proofs had in common is that we ran machines and observed
them but never went inside of the machine. Hence we could just as well ran an oracle
machine.

We won'’t define relative formally. However, the next theorem can be interrupted
as saying that techniques that relativize will not suffice to resolve P vs NP.

Theorem 6.1
1. There exists A such that P4 = NP4,
2. There exists B such that PP # NP5B.



Proof:
Let
MY, M, MY

be all poly time OTMs.
1) We construct A such that PA = NP4 by coding into it results. Formally (and
we’ll see later this makes sense)

A= {(i,z,0") | some path of M{}(x) accepts in < n steps }.

This looks circular. This looks like you have to know A to compute A. But note
that if we simulate all paths of M7 (z) for n steps then we only write down queries of
size < n. Also note that the string (i, x,0") is longer than n. Hence if we just decide
each string in order by length, we will have enough of A to determine what M (x)
does in n steps.

More formally:

Let wy, wq, ws, - - - be all strings in {0, 1}* in lex order. So the shorter strings come
first. We have a fast map that maps strings to triples in {0,1}* x {0,1}* x 0*. Make
sure that if w maps to (i,xz,0") then n < w. This may not be possible if w is very
short, so we’ll just say that we do this for strings of length > 100.

ALGORITHMS FOR A

1. Input(w;). If |w;| < 99 then reject.

2. For all strings of length < |w;| determine if w; € A or not. Let the set of strings
that are determined to be in A by A'.

3. Determine x,i,n such that w; maps to (i,x,0m).

4. Run MiAl () on all paths for n steps. Note that this will make queries of length
< n hence this computation is identical to that of M (z) even though we don’t
know all of A yet.

5. If there exists a computation path such that MlA, (x) accepts within n steps then
accept (so w; € A) else reject (so w; ¢ A).

We claim that PA = NP4, Let X € NP% via M{*. Assume that M{* runs in
time < p(n) where p is a polynomial. The following algorithm shows X € PA:

To determine v € X make the query “(i,z,0°02)) € A?” If it says YES then
ACCEPT. If it says NO then REJEC'T.

2) We construct B such that PB # N PP by diagonalization.
For ANY B let

LP ={0" | Gy)llyl = n AND y € BI}.



Note that, for ANY B, LP € NPB. We construct a B such that L? ¢ PP.
Consider the following requirements:

R;: L(MP) # LP.

ALGORITHM FOR B

1. Input(0™)

2. Run the algorithm for all m < n to determine which requirements have been
satisfied. Let R; be the least requirement that is not satisfied. Let B’ be the set
of strings that have been put into B so far.

3. If there are no strings in B’ of length n AND p;(n) < 2" then do the following:
Run MP'(0"). If it ACCEPTS then R; is satisfied sine there are NO strings of
length n in B’ and we now know to NEVER put in such a string, so 0" ¢ LB. If
it REJECTS then, since it only ran for p;(n) steps and p;(n) < 2", there exists
some string y € {0,1}" that has NOT been queries. But this string in. KEY:
this will NOT interfere with the computation since y was never queries. KEY:
We now have that 0" € L? but M;(0") REJECTS. Hence R; is satisfied.

Since all of the R; are satisfied, L® € NPB — PB so PP £ NPB.
|



