Sparse Sets I: Showing SAT <,, S — P = NP Using Intervals
Exposition by William Gasarch

1 Definitions and Notation

A sparse set is one that, for each n, does not have that many elements of
length < n (this will be defined rigorously soon). How helpful are they? The
answer, in short, is ‘not very helpful’. We will show this in three different
ways.

1. Mahaney [3] proved that sparse sets cannot be NP-hard under m-
reductions unless P = NP. Watanabe [4] showed that sparse sets can-
not be NP-hard under btt-reductions (do not worry if you do not know
what this means) unless P = NP. Homer and Longpre [1] simplified the
proof of Watanabe. In this writeup we present a proof of Mahaney’s
theorem in the spirit of Homer-Longpre.

2. Karp and Lipton [2] show that sparse sets cannot be NP-hard under
T-reductions unless X5 = IIY. We present an alternative proof due to
Hopcroft.

3. Yap [5] showed that if SAT e IIPS™AF then 2 — II5. Roughly
speaking, SAT is not in II} even if the II} is based on a predicate that
has access to a sparse set.

Why do we care about these things? There are historical reasons why
Theorist care about some of them (search the literature for ‘The Berman-
Hartmanis Conjecture’); however, we have other motivations.

Our quest for Natural sets that are probably in NP — P. Consider
the set
1) Ramsey’s theorem states that

For all m there s and n such that for all 2-colorings of the edges of K,
there is a monochromatic K,,. It is known that m = 6(logn); however,
finding the exact Ramsey numbers seems hard.

Here is one attempt to pin down the difficulty of finding Ramsey numbers.
Let

RAM = {(n,m) | there is a 2-coloring of the edges of K,, with no monochromatic K,,}

Is this set in NP? This is unlikely. Note that the input (which are in
binary) are of length O(logn). and the witness of of length O(n?). Hence
the obvious witness does not work. So, how to pin down the complexity of

finding the Ramsey numbers?
Consider RAMUN ARY:

{(1™,1™) | there is a 2-coloring of the edges of K,, with no monochromatic K,,}

This set is in NP and pins down the complexity of finding the Ram-
sey numbers. However, this is a sparse set. Therefore it is likely not NP-
complete.

2) We will show that if GI is NP-complete then X§ = II5.. We will need
Yap’s theorem: if ¥ is Turing-reducible to a spare set then X5 = II5.
Another reason to care about sparse sets.

The notion of “Turing reduction to a sparse set” is equivalent to polyno-
mial sized circuits, which are of interest.

Notation 1.1

1. If n € N then {0,1}" is the set of strings over {0, 1} that are of length
n, and {0,1}=" is the set of strings of length < n over {0, 1}.

2. = denotes the lexicographic ordering on {0, 1}*.

3. If Ais a set then |A| is the number of elements in it. If ¢ is a string
then |o| is its length. Hence we are using the same notation for both
the length of a string and the size of a set. Sorry about that.

Def 1.2 A set S C {0,1}* is sparse if there exists a polynomial s such that,
for all n, |S N {0,1}="| < s(n). (So the notion of sparse only applies to sets
of strings over {0, 1}.)

2 IfSAT <P S, S Sparse, then P = NP

Def 2.1 If A and B are sets then A <P B means that there is a polynomial
time function f such that x € A iff f(z) € b. We use the <P notation for
two reasons: (1) We are allowing the function f to be many-to-1 instead of
1-to-1. T do not care about this either but it is historical. (2) To distinguish
it from <%., Turing reduction, which we will use in a different set of notes.

Def 2.2 LSAT (called Left Sat) is the set of ordered pairs (¢, z) such that
1. ¢ is a Boolean formula. Let n be the number of variables.
2. 2 €{0,1}" is viewed as an assignment.

3. There exists < z such that ¢(z).

Exercise 1

1. Prove that LSAT is in NP.

2. Prove that LSAT is NP-complete.

We will use the following fact, which we leave as exercises for the reader,
in what follows.

Exercise 2 Let ¢ be a Boolean formula on n variables. Let m € N. Let
z =<2 and 2 < -+ < 2, € {0,1}".

1. Prove that if (¢, z) € LSAT then (¢, 2’) € LSAT.
2. Prove that one of the following occurs

(a) For all 7, (¢, z;) € LSAT.
(b) For all i, (¢, z;) ¢ LSAT.

(c¢) There exists i, 1 < i < m such that (¢,21),...,(¢,z) ¢ LSAT
and (¢, zi11), .., (P, zm) € LSAT

(d) From the above we can conclude that if for some i, (¢, z;) ¢ LSAT
then (¢, 21) ¢ LSAT.

Exercise 3 Show that if A <P B and B <P C then A <P C.
Exercise 4 Show that if 0 < § < % then 1 — 6 < e™9 < 279,

Theorem 2.3 If there exists a sparse set S such that SAT <P S then P =
NP.

Proof:
By Exercise 1.1

LSAT € NP.
Since SAT is NP-complete,

LSAT <P SAT.
By the premise SAT <P S. By Exercise 3 we have

LSAT <P S.
Let f be the poly time reduction such that

(6,2) € LSAT iff f(¢,2) € S.

Note that f returns strings so the notation |f(¢, z)| makes sense. Since
f runs in polynomial time its output length is bounded by a polynomial in
its input length. Let p(n) be a polynomial such that
If ¢ has n variables and z € {0, 1}" then |f(¢, z)| < p(n).
S is sparse, so there is a polynomial s such that (Vn)[|SN{0,1}="| < s(n)].
Hence
{0, 1}=°™) 0 S| < s(p(n))).

We can assume that, for all n, s(n) > 10. (We can do this since s(n) is used
as an upper bound.)

Before giving the algorithm for SAT we discuss the intuition. Initially
when you are given ¢ you are looking at the interval [0",1"] for a satisfying
assignment. Our algorithm will use the reduction f to eliminate large parts
of the interval. We will actually present an algorithm that does the following;:

Input: a formula ¢ on n variables and a set POSS C {0, 1}" such that, if ¢ €
SAT, then it has a satisfying assignment in POSS. POSS will be represented
by a set of ¢ intervals. Note that POSS is a set of POSSIBILITIES for where

the satisfying assignment may be.

Output one of the following:

1. A set POSS’ (which is at most ¢ + 1 intervals) such that, if ¢ € SAT,
then it has a satisfying assignment in POSS’, and |[POSS’| < |POSS]|-

1
P EEICICOES
2. YES ¢ € SAT.

3. NO ¢ ¢ SAT.

We will first exhibit an algorithm A for this problem We will then show
how we can easily use algorithm A to solve SAT in P.
Algorithm A

1. Input (¢, POSS). POSS is represented by a set of intervals so
POSS = {[bla 61]7 R [bta et]}’

Let BEGIN be the least element of POSS and END be the max
element of POSS.

2. If |[POSS| < s(p(n)) then, for each z € POSS, evaluate ¢(z). If one
of those 2’s is a satisfying assignment then output YES. If none of the
z"’s is a satisfying assignment then output NO.

3. If you got to this step then |[POSS| > s(p(n))+1. Let L = s(p(n))+1).
We are going to break POSS into L intervals of roughly equal size.
Pick 21 < 23 < -+ < zp_1 < 2, such that the intervals [BEGIN, z],
(29, 23], ... [20, EN D] are all roughly the same size. For 1 < j < L let
w; = f(¢, z;). Note that each interval has roughly [POSS|/L elements.

Note that by Exercise 2.2 and the definition of reduction we have that
one of the following must occur, though note that we do not know which
of these happens.

(a) For all j, w; € S.

4.

(b) For all j, w; ¢ S.

(c) Thereexists j, 1 < j < Lsuchthatws,...,w; ¢ Sandwjiq,...,wy €
S.

Thought experiment: Lets say we know that SOME w; ¢ S. Then we
know that w; ¢ S. Then we know that (¢, 21) ¢ LSAT. Then we know
that there is NO satisfying assignment for SAT in [BEGIN, z;]. and
hence can eliminate [BEGIN, z] from POSS.

(a) Case 1: There exists i < j such that w; = w;. We know

2 < z;. Let w = w; = w;. Note that we DO NOT KNOW ifw € S
or not. But what do we know? Since f(¢,2) = f(¢,2;) = w we
know that (¢, z;) € LSAT iff (¢, z;) € LSAT. Hence, if there is an
satisfying assignment z < z; then there is a satisfying assignment
z = z;. Therefore we can eliminate [z;, z;]. We eliminate this NOT
because none of these can satisfy ¢, but because IF one of them
satisfies ¢,then some z < z; satisfies ¢. Output the set

POSS" = POSS — [z,-,zj].
Note that

|POSS'| < |POSS|—|POSS|/L

<
< |POSS|- (1 - 7s(p(§))+1)

By Exercise 4 and the fact that s(p(n)) + 1 > 10 yields
_ 1
|POSS’(1—W)| S ‘POSS|2 S(P(")H“l‘

Recall that POSS consisted of t intervals. Note that the set of
possibilities being discarded is contiguous. It is easy to see that
the number of intervals in POSS’ is at most t + 1.

(b) Case 2: wy,...,wy are all different. Since these are all of length
< p(n) we know that at most s(p(n)) can be in S. Hence there
must be some w; that is not in S. By the thought experiment
above we can eliminate [BEGIN, z| from POSS. Output the
set

POSS"= POSS — [BEGIN, z].

By similar reasoning to that used in Case 1 we have

|POSS| - (1 —)| < |POSS| - 2~ e,

s(p(n)) +1

and that the number of intervals in POSS’ is at most s + 1.
We now use algorithm A in a polynomial time algorithm for SAT.

1. Input ¢.
2. POSS =[0™,1"].

3. Iterate the following procedure until an output of YES or NO occurs.
(We later prove that at most a polynomial number of iterations are

needed.)

(a) Run A on (¢, POSS).

(b) If output is YES then stop and output YES. If output is NO then
stop and output NO. If output is POSS’ then let POSS = POSS’
and goto step a.

Let POSS; be the set POSS after i iterations. Let a; = |[POSS;|. It is
easy to see that

ag = 2"

a; < ai—127m-

Hence , ,

a; < 2" - 27O = Q"SI

It is easy to see that if i = n(s(p(n))+ 1) then a; = 1. Hence there exists
ip < n(s(p(n))+1 such that a;, is small enough that algorithm A will output
YES or NO in polynomial time. Hence SAT € P. |

References

[1] S. Homer and L. Longpre. On reductions of NP sets to sparse sets.
Journal of Computer and System Sciences, 48, 1994. Prior version in
STRUCTURES 1991.

2]

R. Karp and R. Lipton. Some connections between nonuniform and uni-
form complexity classes. In Proceedings of the Twelfth Annual ACM Sym-
posium. on the Theory of Computing, Los Angeles CA, pages 302-309,
1980.

S. Mahaney. Sparse complete sets for NP: Solution to a conjecture of

Berman and Hartmanis. Journal of Computer and System Sciences,
25:130-143, 1982.

Ogiwara and Watanabe. On polynomial-time bounded truth-table re-
ducibility of np sets to sparse sets. SIAM Journal on Computing, 20,
1991. Earlier version in STOC 1990.

C. Yap. Some consequences of non-uniform conditions on uniform classes.
Theoretical Computer Science, 26:287-300, 1983.

