
Sparse Sets: Showing SAT ≤p
btt SS → P = NP Using Chains

Exposition by William Gasarch

1 Definitions and Notation

Def 1.1 A set S ⊆ {0, 1}∗ is sparse if there exists a polynomial s such that,
for all n, |S ∩ {0, 1}≤n| ≤ s(n). (So the notion of sparse only applies to sets
of strings over {0, 1}.)

Notation 1.2 Let B be a set. Let k ∈ N. Then FML(k,B) is the set of all
Boolean Combinations of k atoms of the form x ∈ B. Note that an element
of FML(k,B) is either TRUE or FALSE.

Example 1.3 Let B ⊆ {0, 1}∗. Here is an example of an elements of
FML(2, B):

(0010 ∈ B) ∧ (00110010101 /∈ B).

Here is an example of an element of FML(3, B):

((00 ∈ B) ∧ (1100 /∈ B)) ∨ (00 /∈ B ∧ 1111 ∈ B).

Notation 1.4 We will write an element of FML(k,B) by writing the strings
and then the formula with placeholders for the strings. For example, the two
in the example will be written

((0010, 00110010101), BLAH1 ∈ B ∧BLAH2 /∈ B

(00, 1100, 1111), (BLAH1 ∈ B∧(BLAH2 /∈ B)∨(BLAH1 /∈ B∧BLAH3 ∈ B).

Def 1.5 If A and B are sets and k ∈ N then A ≤p
k-tt B means that there is

a polynomial time function f : A → FML(k,B) such that x ∈ A iff f(x) is
TRUE.
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Def 1.6 If A and B are sets and k ∈ N then A ≤p
btt B means that there is a

some k such that A ≤p
k-tt B.

Def 1.7 LSAT (called Left Sat) is the set of ordered pairs (φ, z) such that

1. φ is a Boolean formula. Let n be the number of variables.

2. z ∈ {0, 1}n is viewed as an assignment.

3. There exists x � z such that φ(x).

Exercise 1

1. Prove that LSAT is in NP.

2. Prove that LSAT is NP-complete.

We will use the following fact, which we leave as exercises for the reader,
in what follows.

Exercise 2 Let φ be a Boolean formula on n variables. Let m ∈ N. Let
z ≺ z′ and z1 ≺ · · · ≺ zm ∈ {0, 1}n.

1. Prove that if (φ, z) ∈ LSAT then (φ, z′) ∈ LSAT.

2. Prove that one of the following occurs

(a) For all i, (φ, zi) ∈ LSAT.

(b) For all i, (φ, zi) /∈ LSAT.

(c) There exists i, 1 ≤ i ≤ m such that (φ, z1), . . . , (φ, zi) /∈ LSAT
and (φ, zi+1), . . . , (φ, zm) ∈ LSAT

(d) From the above we can conclude that if for some i, (φ, zi) /∈ LSAT
then (φ, z1) /∈ LSAT .

Exercise 3 Show that if A ≤p
btt B and B ≤p

btt C then A ≤p
btt C.

Notation 1.8 If n ∈ N then [n] is the set {1, . . . , n}.

We will need this lemma several times. We leave the proof to the reader.

Lemma 1.9 Let L ∈ N. Let W be ANY set. If w1, w2, . . . , wL are elements
of W then either (1) there exists at least

√
L that are identical, or (2)there

exists at least
√
L that are different.
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2 The 2-tt case

Theorem 2.1 If there exists a sparse set S such that SAT ≤p
2−tt S then

P = NP.

Proof:
Let S be s(n) sparse and let the reduction be via f . Let g(n) = s(f(n)).

In all that we deal with the number of strings in S will be bounded by g(n).
We use the chain method.

Def 2.2 A chain of length m is a sequence of the form

• ((φ, z1), ~w1, ψ1))

• ((φ, z2), ~w2, ψ2))

• ...

• ((φ, zm, ), ~wm, ψm))

such that the following hold.

1. z1 > z2 > · · · > zm in lex order.

2. For all j, k
(φ, zj) ∈ LSAT iff (φ, zk) ∈ LSAT.

(Hence either all of the (φ, zj) are in LSAT or all the (φ, zj) are not in
LSAT .)

3. For all j, f(φ, zj) = (~wj, ψj). Note that hence ~wj is a vector of length
2 and ψj is a boolean formula on two atoms of the form w ∈ S. (Given
the last point, either all of the ψj(~wj) are TRUE or all of them are
FALSE.

4. All of the (~wi, ψi) are DIFFERENT. (NOTE- its okay to have ~wi = ~wj

so long as ψi 6= ψj.)
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Given (φ, ~z) we build a chain starting there. Our goal is not to find out if
(φ, ~z) ∈ LSAT . Note that we can easily compute (~w, ψ) ∈ FML(2, S) such
that

(φ, ~z) ∈ LSAT iff ψ(~w) = TRUE.

We WANT to obtain a (ψ′, ~w′) ∈ FML(1, S) such that

(φ, ~z) ∈ LSAT iff ψ′(~w′) = TRUE.

So essentially we show that if LSAT ≤p
2−tt S then LSAT ≤p

1−tt S.
We will try to build a chain. One of two things must happen.

1. While trying to build it we will just find out if (φ, ~z) ∈ LSAT .

2. The chain will go all the way down to (φ, 0n). Since it is easy to
determine if (φ, 0n) ∈ LSAT we will be done.

3. Let h1(n) be a function to be named later, though note that it will be
polynomial. If the chain gets to be of length h1(n) then the following
happens. First there are MANY that have the same ψ. Restrict to just
those. So we are looking at a chain of length h2(n) = h1(n)/16. (Since
there are 16 different possible ψ.) Since the ψ are all the same we have,
for all i 6= j, ~wi 6= ~wj. View the sequence of elements of FML(2, S) as
follows: (Let L = h2(n) for ease of reading.)

w11 w12 w13 · · · w1L

w21 w22 w23 · · · w2L

By Lemma 1.9 one of the two must occur: (1) there is a set J ⊆ [L],
|J | ≥

√
L, such that every element of {w1j | j ∈ J} is the same,

or (2) there is a set J ⊆ [L], |J | ≥
√
L, such that every element of

{w1j | j ∈ J} is different.

Restrict to this set J and renumber so that we have:

w11 w12 w13 · · · w1J

w21 w22 w23 · · · w2J

Note that either all of the w1j are the same or all are different.
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By Lemma 1.9 one of the following must occur: (1) there is a set
J ′ ⊆ [J ], |J ′| ≥

√
J , such that every element of {w2j | j ∈ J} is the

same, or (2) there is a set J ′ ⊆ [J ], |J ′| ≥
√
J , such that every element

of {w2j | j ∈ J ′] is different.

Restrict to this set J ′ and renumber so that we have:

w11 w12 w13 · · · w1J ′

w21 w22 w23 · · · w2J ′

We note a few things. First off, |J ′| ≥ (h1(n)/16)1/4. We use this later
when we need to derive a bound for h1(n). Second it is not possible
that option (1) happened both times since then you would have all of
the ~wj are the same when in fact you can’t even have two that are the
same. So either its (1) then (2), or (2) then (1), (2) then (2). The first
two are symmetric so we just have two cases.

Case 1: (1) then (2). So we have

w w w · · · w
w1 w2 w3 · · · wJ ′

Where all the wi are different.

We take h1(n) such that |J ′| ≥ h1(n)/16)1/4 ≥ g(n)+1. Hence we need
h1(n) ≥ 16(g(n) + 1)4. Since all of the wi are different and there are
≥ g(n) of them, there must be one that is NOT in S. Hence for some
i we have

(φ, zi) ∈ LSAT iff ψ(w,F ).

But recall that in the original chain we have that either they are ALL
in LSAT or NONE are in LSAT . So we now have

(φ, 1n) ∈ LSAT iff ψ(w,F ).

Note that ψ(w,F ) ∈ FML(1, S).

Case 2: (2) then (2). So we have
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w11 w12 w13 · · · w1J ′

w21 w22 w23 · · · w2J ′

Where every string in a row is different. Note that it is possible that
there is a string in the first row that equals a string in the second row.
This will not be a problem.

We would like to have that there is some column where BOTH are
NOT in S. (We won’t know which column that is.)

We need a simple combinatorial lemma.

Lemma 2.3 Let w1j and w2j be strings. We write them as such:

w11 w12 w13 · · · w1J ′

w21 w22 w23 · · · w2J ′

Let S be a set of strings. If over 1/2 of the string in each row are NOT
in S then there exists a column where both of the strings in it are not
in S.

Proof: Assume, by way of contradiction, that every column has an
element of S in it. Map column j to 1 if w1j ∈ S and to 2 if w2j ∈ S.
Either 1 or 2 is mapped to ≥ J ′/2 times. Assume its 1. Then there are
≥ J ′/2 elements in row 1 that are in S. This contradicts the premise.

Hence we take |J ′| ≥ 3g(n). Unraveling it all we need

|J ′| ≥ h1(n)/16)1/4 ≥ 3g(n) so we need h1(n) ≥ 16(3g(n)4. This implies
the prior lower bound on h1 so we can take h1(n) = 16(3g(n))4.

Since there is a row where both strings are NOT in S we have

(φ, 1n) ∈ LSAT iff ψ(F, F ).

Here we know the status of (φ, ~z) in LSAT .
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