
Sparse Sets III: SAT ≤T S → Σ2 = Π2

Exposition by William Gasarch

1 SAT ≤p
T S, S Sparse → Σp

2 = Πp
2 = PH

Def 1.1 An Oracle Turing Machine (OTM) is a Turing Machine that can,
in addition to the usual operations, ask questions of membership of some
set, called an oracle. It is denoted M (). One can define if formally in terms
of states and alphabet and transitions; we leave this as an exercise. The
important points about it are as follows.

1. An oracle Turing Machine M () is defined independent of the oracle you
intend to run it with.

2. Questions are asked by writing a query to a special tape.

3. The expression MA(x) means that you run the Turing machine with
oracle A on input x.

4. If we write an oracle algorithm the step “ask z ∈ A” is allowed. This
will take time |z|, which is the time it takes to write the question on
the oracle tape.

A Polynomial Oracle Turing Machine (POTM) is an OTM that runs in
polynomial time.

We are concerned with when SAT ≤p
T S where S is sparse. We will

actually look at Sparseness in a different way.

2 A Different View of Sparseness:ppoly

Def 2.1 A set A is in P/poly if there exists a polynomial p, a function
ADV : 0∗ → {0, 1}∗, and a polynomial predicate B such that the following
hold.

1. For all n, ADV(0n) ∈ {0, 1}p(n).

2. For all n
A ∩ {0, 1}≤n = {x | B(x, ADV(0n))}.
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We think of the string ADV(0n) as giving advice for all strings of length
≤ n. The class P/poly is often referred to as ‘poly time with advice’.

We leave the following as an exercise.

Lemma 2.2 Let A ⊆ {0, 1}∗. The following are equivalent.

1. A ≤p
T S where S is sparse set.

2. A ∈ P/poly.

3 A Different View of Sparseness:Circuits

Def 3.1 Fix n. A circuit on n inputs is just what you think it is: n inputs
and then AND, OR and NOT gates, and a final output gate. Note that these
can only compute a function on {0, 1}n.

We will define a circuit (of a bounded size) to decide a set if there is a
diff circuit for each n.

Def 3.2 Let s(n) be a function. A circuit of size s(n) is a SEQUENCE of
circuits C1, C2, . . ..

Def 3.3 A set A ⊆ {0, 1}n has a circuit of size s(n) if there is a sequence of
circuits C1, C2, C3, . . . such that (1) Cn has at most s(n) gates, and (2) Cn

computers A restricted to strings of length n.

We leave the following as an exercise.

Lemma 3.4 Let A ⊆ {0, 1}∗. The following are equivalent.

1. A ≤p
T S where S is sparse set.

2. A ∈ P/poly.

3. A has poly sized circuits.
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4 Main Theorem

We will express the theorem in terms of circuits.

Def 4.1 Let FINDSAT be the following function:

1. If φ ∈ SAT then FINDSAT (φ) is the lex least satisfying assignment
of φ.

2. If φ /∈ SAT then FINDSAT (φ) outputs 0v, where v is the number of
variables in φ.

We leave the following proof as an easy exercise.

Lemma 4.2 If SAT has poly sized circuits then FINDSAT has poly sized
circuits.

We can now prove our main theorem.

Theorem 4.3 If SAT has poly sized circuits then PH = Σp
2 = Πp

2.

Proof:
Let A ∈ Πp

2. Then there exists B ∈ NP such that

A = {x | (∀py)[(x, y) ∈ B]}.
By the Cook-Levin Theorem there exists a function in poly that takes

x, y and maps to a formula φx,y such that

(x, y) ∈ B iff φx,y ∈ SAT.

Hence

A = {x | (∀py)[φx,y ∈ SAT]}.
Since FINDSAT has poly sized circuits we know THERE EXISTS a

circuit that computes FINDSAT (φx.y). But here is the key— the alleged
circuit outputs an assignment THAT CAN BE TESTED!

We claim

A = {x | (∃pC)(∀py)[φx,y(C(φx,y))]}.

3



Why is this?
If x ∈ A then for all y, φx,y is satisfiable. Hence the CORRECT C that

computes FINDSAT will always find an assignment that works.
If there is a circuit C such that (∀py)[φx,y(C(φx,y))]} then clearly (whether

or not C is the real circuit that computes FINDSAT) (∀py)[φx,y(C(φx,y))]}.
Hence x ∈ A.

We have taken a Πp
2 set and showed it isin Σp

2. Hence Πp
2 ⊆ Σp

2. Comple-
ment both sides to obtain Σp

2 ⊆ Πp
2. Hence Πp

2 = Σp
2.
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