Sparse Sets III: $SAT \leq_T S \rightarrow \Sigma_2 = \Pi_2$ Exposition by William Gasarch

1 $SAT \leq^{\mathrm{p}}_{\mathrm{T}} S, S$ **Sparse** $\rightarrow \Sigma_2^{\mathrm{p}} = \Pi_2^{\mathrm{p}} = \mathrm{PH}$

Def 1.1 An Oracle Turing Machine (OTM) is a Turing Machine that can, in addition to the usual operations, ask questions of membership of some set, called an oracle. It is denoted $M^{()}$. One can define if formally in terms of states and alphabet and transitions; we leave this as an exercise. The important points about it are as follows.

- 1. An oracle Turing Machine $M^{()}$ is defined independent of the oracle you intend to run it with.
- 2. Questions are asked by writing a query to a special tape.
- 3. The expression $M^A(x)$ means that you run the Turing machine with oracle A on input x.
- 4. If we write an oracle algorithm the step "ask $z \in A$ " is allowed. This will take time |z|, which is the time it takes to write the question on the oracle tape.

A *Polynomial Oracle Turing Machine* (POTM) is an OTM that runs in polynomial time.

We are concerned with when $SAT \leq_T^p S$ where S is sparse. We will actually look at Sparseness in a different way.

2 A Different View of Sparseness:ppoly

Def 2.1 A set A is in P/poly if there exists a polynomial p, a function ADV : $0^* \rightarrow \{0,1\}^*$, and a polynomial predicate B such that the following hold.

- 1. For all n, ADV $(0^n) \in \{0, 1\}^{p(n)}$.
- 2. For all n

$$A \cap \{0, 1\}^{\le n} = \{x \mid B(x, ADV(0^n))\}.$$

We think of the string $ADV(0^n)$ as giving advice for all strings of length $\leq n$. The class P/poly is often referred to as 'poly time with advice'.

We leave the following as an exercise.

Lemma 2.2 Let $A \subseteq \{0,1\}^*$. The following are equivalent.

- 1. $A \leq_{\mathrm{T}}^{\mathrm{p}} S$ where S is sparse set.
- 2. $A \in P/poly$.

3 A Different View of Sparseness:Circuits

Def 3.1 Fix *n*. A *circuit on n inputs* is just what you think it is: *n* inputs and then AND, OR and NOT gates, and a final output gate. Note that these can only compute a function on $\{0, 1\}^n$.

We will define a circuit (of a bounded size) to decide a set if there is a diff circuit for each n.

Def 3.2 Let s(n) be a function. A *circuit of size* s(n) is a SEQUENCE of circuits C_1, C_2, \ldots

Def 3.3 A set $A \subseteq \{0, 1\}^n$ has a *circuit of size* s(n) if there is a sequence of circuits C_1, C_2, C_3, \ldots such that (1) C_n has at most s(n) gates, and (2) C_n computers A restricted to strings of length n.

We leave the following as an exercise.

Lemma 3.4 Let $A \subseteq \{0,1\}^*$. The following are equivalent.

- 1. $A \leq^{\mathrm{p}}_{\mathrm{T}} S$ where S is sparse set.
- 2. $A \in P/poly$.
- 3. A has poly sized circuits.

4 Main Theorem

We will express the theorem in terms of circuits.

Def 4.1 Let *FINDSAT* be the following function:

- 1. If $\phi \in SAT$ then $FINDSAT(\phi)$ is the lex least satisfying assignment of ϕ .
- 2. If $\phi \notin SAT$ then $FINDSAT(\phi)$ outputs 0^v , where v is the number of variables in ϕ .

We leave the following proof as an easy exercise.

Lemma 4.2 If SAT has poly sized circuits then FINDSAT has poly sized circuits.

We can now prove our main theorem.

Theorem 4.3 If SAT has poly sized circuits then $PH = \Sigma_2^p = \Pi_2^p$.

Proof:

Let $A \in \Pi_2^p$. Then there exists $B \in NP$ such that

$$A = \{ x \mid (\forall^p y) [(x, y) \in B] \}.$$

By the Cook-Levin Theorem there exists a function in poly that takes x, y and maps to a formula $\phi_{x,y}$ such that

$$(x,y) \in B$$
 iff $\phi_{x,y} \in SAT$.

Hence

$$A = \{ x \mid (\forall^p y) [\phi_{x,y} \in \text{SAT}] \}.$$

Since FINDSAT has poly sized circuits we know THERE EXISTS a circuit that computes $FINDSAT(\phi_{x,y})$. But here is the key— the alleged circuit outputs an assignment THAT CAN BE TESTED!

We claim

$$A = \{x \mid (\exists^p C)(\forall^p y)[\phi_{x,y}(C(\phi_{x,y}))]\}.$$

Why is this?

If $x \in A$ then for all y, $\phi_{x,y}$ is satisfiable. Hence the CORRECT C that computes FINDSAT will always find an assignment that works.

If there is a circuit C such that $(\forall^p y)[\phi_{x,y}(C(\phi_{x,y}))]$ then clearly (whether or not C is the real circuit that computes FINDSAT) $(\forall^p y)[\phi_{x,y}(C(\phi_{x,y}))]$. Hence $x \in A$.

We have taken a Π_2^p set and showed it isin Σ_2^p . Hence $\Pi_2^p \subseteq \Sigma_2^p$. Complement both sides to obtain $\Sigma_2^p \subseteq \Pi_2^p$. Hence $\Pi_2^p = \Sigma_2^p$.