$NP \in \text{co-NP/poly} \rightarrow \Sigma_5^p = \Pi_5^p$ Exposition by William Gasarch

1 Introduction

Recall the definitions of P/poly, NP/poly and co-NP/poly.

Notation 1.1 PTM means Polynomial time bounded Turing Machine.

Def 1.2

1. $A \in P/\text{poly}$ if there exists a PTM M, a function $h: 0^* \to \{0, 1\}^*$, and a polynomial p such that $|h(0^n)| = p(n)$, and

$$A = \{x \mid M(x; h(0^{|x|}) = 1\}.$$

2. $A \in \text{NP/poly}$ if there exists an PTM M, a function $h: 0^* \to \{0, 1\}^*$, and a polynomial p such that $|h(0^n)| = p(n)$, and

$$A = \{x \mid (\exists^p y)[M(x, y; h(0^{|x|})) = 1]\}.$$

3. $A \in \text{co-NP/poly}$ if there exists an PTM M, a function $h: 0^* \to \{0, 1\}^*$, and a polynomial p such that $|h(0^n)| = p(n)$, and

$$A = \{x \mid (\forall^p y)[M(x, y; h(0^{|x|})) = 1]\}.$$

The string $h(0^n)$ is called advice for strings of length n. We leave the proof of the following easy lemma to the reader.

Lemma 1.3 The following are equivalent:

- 1. $NP \subseteq \text{co-NP/poly}$
- 2. $coNP \subseteq NP/poly$
- 3. $SAT \in \text{co-NP/poly}$

4. $TAUT \in NP/poly$

We will show that

$$NP \subseteq \text{co-NP/poly} \to \Sigma_5^p = \Pi_5^p$$

by showing

$$TAUT \in NP/poly \rightarrow \Sigma_5^p = \Pi_5^p$$
.

2 The Complexity of Advice

Lets say $A \in \text{NP/poly}$ with advice of length p(n). Then one can ask the following question: given a string w of length p(n) is it good advice for the strings of length n? One can look at the complexity of the set of good advice strings.

We define this formally.

Def 2.1 Let $A \in \text{NP/poly}$. Hence there exists an PTM M, a function $h: 0^* \to \{0,1\}^*$, and a polynomial p such that $|h(0^n)| = p(n)$, and

$$A = \{x \mid (\exists^p y)[M(x, y; h(0^{|x|}) = 1\}.$$

Let

$$ADV_A = \{(w, n) \mid |w| = p(n) \land (\forall x, |x| = n) [x \in A \text{ iff } (\exists^p y) [M(x, y; w) = 1]]\}.$$

Since testing if |w| is of length p(n) is easily in P we will ignore that part for the purpose of determining the complexity of ADV. Hence we write (informally),

$$ADV_A = \{ w \mid (\forall^p x)[x \in A \text{ iff } (\exists^p y)[M(x, y; w) = 1]] \}.$$

Lemma 2.2 Let A be a coNP set. Assume $A \in \text{NP/poly}$. Let $ADV = ADV_A$. Then $ADV \in \Pi_3^p$.

Proof:

$$ADV = \{ w \mid (\forall^p x) [x \in A \text{ iff } (\exists^p y) [M(x, y; w) = 1]] \}.$$

Since $A \in coNP$ there exists a poly predicate B such that $x \in A$ iff $(\forall^p z)[B(x,z)]$. Hence we can rewrite ADV as the set of all w such that

$$(\forall^p x)[(\forall^p z)[B(x,z)] \text{ iff } (\exists^p y)[M(x,y;w)=1]]$$

which we rewrite as, omitting the $(\forall^p x)$ for now,

$$[(\forall^p z)[B(x,z)]] \to [(\exists^p y)[M(x,y;w) = 1]] \bigwedge [(\exists^p y)[M(x,y;w) = 1]] \to [(\forall^p z)[B(x,z)]]$$

which we rewrite as

$$[(\exists^p z)[\neg B(x,z)]] \lor [(\exists^p y)[M(x,y;w) = 1]] \bigwedge [(\forall^p y)[M(x,y;w) = 0]] \lor [(\forall^p z)[B(x,z)]]$$

The expression of the form $(\exists^p z)[BLAH] \lor (\exists^p y)[BLAH'$ can be written with one \exists^p and one poly set. We write it as $(\exists^p u)[D(x,y;w]$. Hence we have:

$$(\exists^{p}u)[D(x,y;w)] \bigwedge [[(\forall^{p}y)[M(x,y;w)=0]] \vee [(\forall^{p}z)[B(x,z)]]]$$

How can we write a \vee of two (\forall^p) 's in terms of quantifiers? We can make which of the two parts of the \vee wins another quantifier.

$$(\exists^{p}u)[D(x,y;w)] \bigwedge [[(\exists b \in \{0,1\})(\forall^{p}y)(\forall^{p}z)[(b=0 \to [M(x,y;w)=0]]) \land (b=1) \to [B(x,z)]]]$$

The second term is more complicated than the first. Hence, adding the $(\forall^p x)$, we obtain that $ADV \in \Pi_3^p$.

3 Main Theorem

Theorem 3.1 If $NP \subseteq \text{co-NP/poly } then \Pi_5^p = \Sigma_5^p$.

Proof: Assume $NP \subseteq \text{co-NP/poly}$. Then by Lemma 1.3 $TAUT \in \text{NP/poly}$ via PTM M. Let $ADV = ADV_{TAUT}$. By Lemma 2.2 $ADV \in \Pi_3^p$. Let $A \in \Pi_5^p$. Then there exists a $B \in P$ such that $A = \{A \in \Pi_5^p : ADV \in \Pi_3^p : ADV \in \Pi_3^p$

$$\{x \mid (\forall^p y_1)(\exists^p y_2)(\forall^p y_3)(\exists^p y_4)(\forall^p y_5)[B(x,y_1,y_2,y_3,y_4,y_5)]\}.$$

By the techniques of the Cook-Levin theorem there exists a function that maps x, y_1, y_2, y_3, y_4 to ϕ_{x,y_1,y_2,y_3,y_4} such that

$$A =$$

$$\{x \mid (\forall^p y_1)(\exists^p y_2)(\forall^p y_3)(\exists^p y_4)[\phi_{x,y_1,y_2,y_3,y_4} \in TAUT]\}.$$

We want to replace $\phi \in \text{TAUT}$ with using the advice. So we begin with the advice:

$$A =$$

$$\{x \mid (\exists^p w)(\forall^p y_1)(\exists^p y_2)(\forall^p y_3)(\exists^p y_4)[w \in ADV \land (\exists^p y_6)[M(\phi, y_6; w) = 1] = 1]\}.$$

Since $ADV \in \Pi_3^p$ let

$$ADV = \{ w \mid (\forall^p z_1)(\exists^p z_2)(\forall^p z_3) | C(w, z_1, z_2, z_3) = 1 \} \}.$$

We can weave this into the definition of A.

$$A =$$

$$\{x \mid (\exists^p w)(\forall^p y_1, z_1)(\exists^p y_2, z_2)(\forall^p y_3, z_3)(\exists^p y_4, y_6)[C(w, z_1, z_2, z_3 \land M(\phi, y_6; w) = 1] = 1]\}.$$

Hence $A \in \Sigma_5^p$.