Sparse Sets IV: SAT in coNP-sparse Exposition by William Gasarch

1 SAT $\in \Pi_1^{p,SPARSE}$ then $\Sigma_3^p = \Pi_3^p$

Recall that $A \in \Sigma_1^p$ if there exists $B \in P$ such that

$$A = \{ x \mid (\exists^p y) [B(x, y)] \}.$$

Notation 1.1

1. A set A is in $\Sigma_1^{p,SPARSE}$ if there exists a set B and a sparse set S such that $B \leq_T^p S$ and

$$A = \{x \mid (\exists^p y)[B(x,y)]\}.$$

2. A set A is in $\Pi_1^{p,SPARSE}$ if there exists a set B and a sparse set S such that $B \leq_T^p S$ and

$$A = \{ x \mid (\forall^p y) [B(x, y)] \}.$$

3. For $i \geq 2, A \in \Sigma_i^{\text{p,SPARSE}}$ if there exists $B \in \Pi_{i-1}^{\text{p,SPARSE}}$ such that

$$A = \{ x \mid (\exists^p y) [B(x, y)] \}.$$

4. For $i \geq 2, A \in \prod_{i=1}^{p, \text{SPARSE}}$ if there exists $B \in \prod_{i=1}^{p, \text{SPARSE}}$ such that

$$A = \{ x \mid (\forall^p y) [B(x, y)] \}.$$

Our goal is to show that

$$SAT \in \Pi_1^{p,SPARSE} \to \Sigma_3^p = \Pi_3^p.$$

We will need this lemma that we had before:

Lemma 1.2 Let $M^{()}$ be a POTM and let S be a sparse set. Then there exists a PTM N and a polynomial p such that the following holds.

$$(\forall n \in \mathsf{N})(\exists u, |u| = p(n))(\forall w \in \{0, 1\}^{\le n})[M^S(w) = N(w; u)].$$

Lemma 1.3 If $\Pi_1^p \subseteq \Sigma_1^{p,\text{SPARSE}}$ then $\Sigma_2^{p,\text{SPARSE}} \subseteq \Sigma_1^{p,\text{SPARSE}}$.

Proof: Let $A \in \Sigma_2^{\text{p,SPARSE}}$. Then by definition there exists a POTM $M^{()}$ and a sparse set S_1 such that

$$A = \{ x \mid (\exists^p y) (\forall^p z) [M^{S_1}(x, y, z) = 1] \}.$$

Let p be such that M^{S_1} runs in time p(n). Let N be the PTM obtained by applying Lemma 1.2 to $M^{()}$. So

$$(\forall n)(\exists^p u)(\forall x \in \{0,1\}^n)(\forall^p y)(\forall^p z)[M^{S_1}(x,y,z) = N(x,y,z,;u)]$$

Let

$$B = \{ \langle x, y, u \rangle \mid (\forall^p z) [N(x, y, z; u)] = 1 \}.$$

We can define A in terms of B as follows:

$$A = \{x \mid (\exists^p u)(\exists^p y) [\langle x, y, u \rangle \in B \land (u \text{ codes } S_1 \cap \{0, 1\}^{\leq p(n)}) \}.$$

Note that $B \in \Pi_1^p$ (no oracle needed). By the hypothesis $B \in \Sigma_1^{p,\text{SPARSE}}$. Hence there exists a sparse set S_2 such that $B \leq_T^p S_2$. Let $M_1^{()}$ be the POTM that does that reduction.

We now rewrite A:

$$A = \{x \mid (\exists^{p} u)(\exists^{p} y)[M_{1}^{S_{2}}(x, y, u) = 1 \land (u \text{ codes } S_{1} \cap \{0, 1\}^{\leq p(n)})\}.$$

How can we tell if u codes $S_1 \cap \{0,1\}^{\leq p(n)}$? We can determine that u codes the set $\{v_1, \ldots, v_L\}$. If we have access to S_1 we can ask $v_1 \in S_1$?, ..., $v_L \in S$? If any of them say NO then u does not code $S_1 \cap \{0,1\}^{\leq p(n)}$. If they all say YES we still do not know that u code $S_1 \cap \{0,1\}^{\leq p(n)}$. It could be that there is some element of $S_1 \cap \{0,1\}^{\leq p(n)}$ that is not in $\{v_1, \ldots, v_L\}$. We need a third sparse set to help us. Let

$$S_3 = \{ < 0^n, |S \cap \{0, 1\}^{\le n} | > :; n \in \mathsf{N} \}.$$

We can also assume we know the polynomial p. So, to test if u codes $S_1 \cap \{0,1\}^{\leq p(n)}$ we (1) ask, for each $i, 1 \leq i \leq L, v_i \in S_1$, (2) ask if $\langle 0^{p(n)}, L \rangle \in I$

 S_3 . If the answer to all of these questions is YES then u codes $S_1 \cap \{0, 1\}^{\leq p(n)}$. Else it does not.

Let S be a sparse oracle that encodes S_1 , S_2 , and S_3 . Note that the set

$$\{(x, y, u) \mid M_B^{S_2}(x, y, u) = 1 \land (u \text{ codes } S_1 \cap \{0, 1\}^{\leq p(n)})\} \leq_{\mathrm{T}}^{\mathrm{p}} S$$

Hence we have shown that $A \in \Sigma_1^{\text{p,SPARSE}}$.

Exercise 1 Let S_1 and S_2 be sparse sets. Define a set S such that S is sparse, $S_1 \leq_{\mathrm{m}}^{\mathrm{p}} S$, and $S_2 \leq_{\mathrm{m}}^{\mathrm{p}} S$. End of Exercise **Exercise 2** Let $i, j \in \mathbb{N}$.

- 1. Show that if $\Sigma_i^{\mathbf{p}} \subseteq \Pi_j^{\mathbf{p}, \text{SPARSE}}$ then $\Pi_i^{\mathbf{p}} \subseteq \Sigma_j^{\mathbf{p}, \text{SPARSE}}$.
- 2. Show that if $\Pi_i^p \subseteq \Pi_j^{p,\text{SPARSE}}$ then $\Sigma_i^p \subseteq \Sigma_i^{p,\text{SPARSE}}$.
- 3. Show that if $\Sigma_2^{p,\text{SPARSE}} \subseteq \Sigma_1^{p,\text{SPARSE}}$ then $\Sigma_3^{p,\text{SPARSE}} \subseteq \Sigma_1^{p,\text{SPARSE}}$.
- 4. Show that if $\Sigma_2^{\text{p,SPARSE}} \subseteq \Sigma_1^{\text{p,SPARSE}}$ then, $(\forall k \ge 1) [\Sigma_k^{\text{p,SPARSE}} \subseteq \Sigma_1^{\text{p,SPARSE}}]$.
- 5. Show that if $\Sigma_i^{\text{p,SPARSE}} \subseteq \Pi_i^{\text{p,SPARSE}}$ then $\Pi_i^{\text{p,SPARSE}} \subseteq \Sigma_i^{\text{p,SPARSE}}$.
- 6. Show that if $A \in \Sigma_i^{\text{p,SPARSE}}$ then $\overline{A} \in \Pi_i^{\text{p,SPARSE}}$.

End of Exercise

Our eventual goal is to show that if SAT $\in \Pi_1^{p,SPARSE}$ then $\Sigma_3^p = \Pi_3^p$. Hence we need to look at sets that are complete for Σ_3^p or Π_3^p . We will look at sets of quantified boolean formulas. In what follows keep in mind that ϕ is an arbitrary Boolean formula and the quantifiers are over Boolean values 0 and 1.

Def 1.4

1. QBF_3 is the set of all sentences of the form

 $(\exists x_1, \ldots, x_{n_1})(\forall y_1, \ldots, y_{n_2})(\exists z_1, \ldots, z_{n_3})[\phi(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}, z_1, \ldots, z_{n_3})]$

that are true. (ϕ is quantifier free.)

This set is Σ_3^{p} -complete. Note that any of n_1, n_2 , or n_3 be 0, but not all three.

2. $\overline{Q}BF_3$ is the set of all sentences of the form

 $(\forall x_1, \ldots, x_{n_1})(\exists y_1, \ldots, y_{n_2})(\forall z_1, \ldots, z_{n_3})[\phi(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}, z_1, \ldots, z_{n_3})]$

that are true. (ϕ is quantifier free.)

This set is Π_3^{p} -complete. Note that any of n_1, n_2 , or n_3 be 0, but not all three.

We will use the following alternative definition of $\overline{Q}BF_3$. The definition is inductive on the number of variables.

Def 1.5 A sentence ψ is in $\overline{Q}BF_3$ if any of the following hold. (A sentence is NOT in $\overline{Q}BF_3$ if none of them hold.) In the below items n_2 and/or n_3 could be 0 which will cover cases with less than three alternations of quantifiers.

- 1. $\psi = (\forall x)[\phi(x)]$ and both $\phi(0)$ and $\phi(1)$ are true.
- 2. $\psi = (\exists x) [\phi(x)]$ and either $\phi(0)$ or $\phi(1)$ is true.
- 3. $\psi = (\exists x_1, \dots, x_{n_1})(\forall y_1, \dots, y_{n_2})[\phi(x_1, \dots, x_{n_1}, y_1, \dots, y_{n_2})]$ and one of $(\exists x_2, \dots, x_{n_1})(\forall y_1, \dots, y_{n_2})[\phi(0, x_2, \dots, x_{n_1}, y_1, \dots, y_{n_2})]$ or $(\exists x_2, \dots, x_{n_1})(\forall y_1, \dots, y_{n_2})[\phi(1, x_2, \dots, x_{n_1}, y_1, \dots, y_{n_2})]$

is in \overline{QBF}_3 . (Note that this is inducive on the number of variables. We are basing membership of ψ in \overline{QBF}_3 on membership of sentences with less variables.)

4. $\psi = (\forall x_1, \dots, x_{n_1})(\exists y_1, \dots, y_{n_2})(\forall z_1, \dots, z_{n_3})[\phi(x_1, \dots, x_{n_1}, y_1, \dots, y_{n_2}, z_1, \dots, z_{n_3})]$ and both

 $(\forall x_2, \dots, x_{n_1})(\exists y_1, \dots, y_{n_2})(\forall z_1, \dots, z_{n_3})[\phi(0, x_2, \dots, x_{n_1}, y_1, \dots, y_{n_2}, z_1, \dots, z_{n_3})]$ and

 $(\forall x_2, \ldots, x_{n_1})(\exists y_1, \ldots, y_{n_2})(\forall z_1, \ldots, z_{n_3})[\phi(1, x_2, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}, z_1, \ldots, z_{n_3})]$

are in $\overline{Q}BF_3$. (Note that this is inducive on the number of variables. We are basing membership of ψ in $\overline{Q}BF_3$ on membership of sentences with less variables.) **Exercise 3** Show that the definitions of $\overline{Q}BF_3$ in Definition 1.4.2 and 1.5 are equivalent. **End of Exercise**

Exercise 4 Show that if $\overline{Q}BF_3 \in \Sigma_3^p$ then $\Sigma_3^p = \Pi_3^p$. End of Exercise

Lemma 1.6 If $\Pi_3^{p,SPARSE} \subseteq \Pi_1^{p,SPARSE}$ then $\Sigma_3^p = \Pi_3^p$.

Proof:

To show that $\Sigma_3^{\rm p} = \Pi_3^{\rm p}$ we show that $\overline{Q}BF_3 \in \Sigma_3^{\rm p}$ and use Exercise above. Clearly $\overline{Q}BF_3 \in \Pi_3^{\rm p} \subseteq \Pi_3^{\rm p,SPARSE}$. Hence by hypothesis $\overline{Q}BF_3 \in \Pi_1^{\rm p,SPARSE}$. So there exists a POTM $M^{()}$ and a sparse set S such that

$$\overline{Q}BF_3 = \{\psi \mid (\forall^p y)[M^S(\psi, y)]\}$$

Let N be the PTM obtained by applying Lemma 1.2 to $M^{()}$.

We are going to look at the set of sets of strings u that make $N(\psi, y; u) = M^{S}(\psi, y)$ for formulas of length $\leq n$ and y of the appropriate length.

$$ADV = \{(u, n) \mid (\forall \psi, |\psi| \le n) [\psi \in \overline{Q}BF_3 \text{ iff } (\forall^p y)[N(\psi, y; u) = 1]]\}$$

We assume that N(;) always outputs 0 or 1.

We show that we can express the set ADV in terms of quantifiers. We use the recursive definition of $\overline{Q}BF_3$ (Definition 1.5).

 $(u, n) \in ADV$ iff for all ψ , $|\psi| \leq n$, the following hold. (The polynomial bounded quantifiers are bounded by a polynomial in n.)

- 1. Case 1: $\psi = (\forall x)[\phi(x)]$. (x is a single Boolean variable) $(\phi(0) \land \phi(1)) \rightarrow (\forall^p y)[N(\psi, y; u) = 1]$. \land $(\neg \phi(0) \lor \neg \phi(1)) \rightarrow (\exists^p y)[N(\psi, y; u) = 0]$.
- 2. Case 2: $\psi = (\exists x)[\phi(x)]$. (x is a single boolean variable.) $(\phi(0) \lor \phi(1)) \to (\forall^p y)[N(\psi, y; u) = 1]$ \land $(\neg \phi(0) \land \neg \phi(1)) \to (\exists^p y)[N(\psi, y; u) = 0].$

- 3. Case 3: $\psi = (\exists x_1, \dots, x_{n_1})(\forall y_1, \dots, y_{n_2})[\phi(x_1, \dots, x_{n_1}, y_1, \dots, y_{n_2})].$ (This includes the case of $n_2 = 0.$) Let $\psi_0 = (\exists x_2, \dots, x_{n_1})(\forall y_1, \dots, y_{n_2})[\phi(0, x_2, \dots, x_{n_1}, y_1, \dots, y_{n_2})]$ and $\psi_1 = (\exists x_2, \dots, x_{n_1})(\forall y_1, \dots, y_{n_2})[\phi(1, x_2, \dots, x_{n_1}, y_1, \dots, y_{n_2})].$ $((\forall^p y)[N(\psi_0, y; u) = 1] \lor (\forall^p y)[N(\psi_1, y; u) = 1]) \rightarrow$ $(\forall^p y)[N(\phi, y; u) = 1].$ \land $((\exists^p y)[N(\psi_0, y; u) = 0] \land (\exists^p y)[N(\psi_1, y; u) = 0]) \rightarrow$ $(\exists^p y)[M^U(\psi, y) = 0].$
- 4. Case 4:

$$\begin{split} &\psi = (\forall x_1, \dots, x_{n_1})(\exists y_1, \dots, y_{n_2})(\forall z_1, \dots, z_{n_3})[\phi(x_1, \dots, x_{n_1}, y_1, \dots, y_{n_2}, z_1, \dots, z_{n_3})] \\ &\text{(This includes the case of } n_3 = 0.) \\ &\text{Let} \\ &\psi_0 = (\forall x_2, \dots, x_{n_1})(\exists y_1, \dots, y_{n_2})(\forall z_1, \dots, z_{n_3})[\phi(0, x_2, \dots, x_{n_1}, y_1, \dots, y_{n_2}, z_1, \dots, z_{n_3})] \\ &\text{and} \\ &\psi_1 = (\forall x_2, \dots, x_{n_1})(\exists y_1, \dots, y_{n_2})(\forall z_1, \dots, z_{n_3})[\phi(1, x_2, \dots, x_{n_1}, y_1, \dots, y_{n_2}, z_1, \dots, z_{n_3})]. \\ &\text{The statement is:} \\ &(\forall^p y)[N(\psi_0, y; u) = 1] \land (\forall^p y)[N(\psi_1, y; u) = 1] \rightarrow (\forall^p y)[M^U(\phi, y) = 1]. \\ &\land \\ &(\exists^p y)[N(\psi_0, y; u) = 0] \lor (\exists^p y)[N(\psi_1, y; u) = 0] \rightarrow (\exists^p y)[N(\phi, y; u) = 0]. \end{split}$$
Exercise 5 Show that the two definitions of ADV given above are equivalent.

Exercise 5 Show that the two definitions of *ADV* given above are equivalent **End of Exercise**

Given the above we can rewrite ADV using two poly predicates B and C as follows:

$$ADV = \{(u, n) \mid (\forall \psi)[(\exists^p y)[B(\psi, y)] \land (\forall^p z)[C(\psi, z)]]\}$$

This can easily be written in Π_2^p form. So the upshot is that $ADV \in \Pi_2^p$. Recall that

$$\overline{Q}BF_3 = \{\psi \mid (\forall^p y)[M^S(\psi, y)]\}$$

We rewrite this in terms of saying that there exists a string in ADV that will help us.

$$\overline{Q}BF_3 = \{\psi \mid (\exists^p u)[u \in ADV \land (\forall^p y)[N(\psi, y; u)]\}$$

Since $ADV \in \Pi_2^p$ and the other part of the internal statement is Π_1^p we have that $\overline{Q}BF_3 \in \Sigma_3^p$.

Theorem 1.7

- 1. If SAT $\in \Pi_1^{p, SPARSE}$ then $\Sigma_3^p = \Pi_3^p$.
- 2. If TAUT $\in \Sigma_1^{p,SPARSE}$ then $\Sigma_3^p = \Pi_3^p$.

Proof:

 If SAT ∈ Π₁^{p,SPARSE} then, since SAT is NP-complete, Σ₁^p ⊆ Π₁^{p,SPARSE}. By Exercise 2.1 Π₁^p ⊆ Σ₁^{p,SPARSE}. By Lemma 1.3 Σ₂^{p,SPARSE} ⊆ Σ₁^{p,SPARSE}. By Exercise 2.3 Σ₃^{p,SPARSE} ⊆ Σ₁^{p,SPARSE}. By Exercise 2.5 Π₃^{p,SPARSE} ⊆ Π₁^{p,SPARSE}. By Lemma 1.6 Σ₃^p = Π₃^p.
If TAUT ∈ Σ₁^{p,SPARSE} then by Exercise 2.6 SAT ∈ Π₁^{p,SPARSE}. By part 1 we have Σ₃^p = Π₃^p.

2 A Different View of Sparseness

Def 2.1 A set A is in P/poly if there exists a polynomial p, a function ADV : $0^* \to \{0,1\}^*$, and a polynomial prediate B such that the following hold.

1. For all n, ADV $(0^n) \in \{0, 1\}^{p(n)}$.

2. For all n

$$A \cap \{0, 1\}^{\le n} = \{x \mid B(x, ADV(0^n))\}.$$

We think of the string $ADV(0^n)$ as giving advice for all strings of length $\leq n$. The class P/poly is often referred to as 'poly time with advice'.

We leave the following as an exercise.

Lemma 2.2 Let $A \subseteq \{0,1\}^*$. The following are equivalent.

- 1. $A \leq^{\mathrm{p}}_{\mathrm{T}} S$ where S is sparse set.
- 2. $A \in P$ /poly.

We can also look at $\Sigma_i^{\mathbf{p}}$ with advice.

Def 2.3 We assume that *i* is odd. For *i* even a similar definition holds. A set A is in Σ_i^p /poly if there exists a polynomial *p*, a function ADV : $0^* \to \{0, 1\}^*$, and a polynomial prediate *B* such that the following hold.

- 1. For all n, ADV $(0^n) \in \{0, 1\}^{p(n)}$.
- 2. For all n

 $A \cap \{0, 1\}^n = \{x \mid (\exists y_1)(\forall y_2) \cdots (\exists y_i)[B(x, y_1, y_2, \dots, y_i, ADV(0^n))]\}.$

Note 2.4 $\Sigma_1^{\rm p}$ /poly we refer to as NP/poly.

We leave the following as an exercise.

Lemma 2.5 Let $A \subseteq \{0,1\}^*$. The following are equivalent.

- 1. $A \in \Sigma_i^{\text{p,SPARSE}}$.
- 2. $A \in \Sigma_i^p$ /poly.

We also need the following which we leave as an exercise.

Notation 2.6 If X and Y are sets then $X\Delta Y$ is $(X - Y) \cup (Y - X)$. Note that $X\Delta Y$ is the set of elements where X and Y differ.

Lemma 2.7 Let $A, A' \subseteq \{0, 1\}^*$. If there exists a polynomial s such that, for all n,

$$|(A \cap \{0,1\}^{\le n})\Delta(A' \cap \{0,1\}^{\le n}| \le s(n))$$

then $A \in \Sigma_i^{\text{p,SPARSE}}$ iff $A' \in \Sigma_i^{\text{p,SPARSE}}$. (We are saying that if A and A' only differ by a polynomial amount on each length n, then A and A' are similar enough that they are either both in $\Sigma_i^{\text{p,SPARSE}}$ or both not in $\Sigma_i^{\text{p,SPARSE}}$.)

We restate The Karp Lipton Theorem and Yaps theorem for the contrast: Karp Lipton Theorem: If $SAT \in P/poly$ then $PH = \Sigma_2^p = \Pi_2^p$

Yap's Theorem: If $SAT \in \text{co-NP/poly}$ then $PH = \Sigma_3^p = \Pi_3^p$