Sparse Sets IV: SAT in coNP-sparse
Exposition by William Gasarch

1 SAT ∈ \Pi_{1}^{p, \text{Sparse}} \text{ then } \Sigma_{3}^{p} = \Pi_{3}^{p}

Recall that \(A \in \Sigma_{i}^{p} \) if there exists \(B \in P \) such that
\[
A = \{ x \mid (\exists y)[B(x,y)] \}.
\]

Notation 1.1

1. A set \(A \) is in \(\Sigma_{1}^{p, \text{Sparse}} \) if there exists a set \(B \) and a sparse set \(S \) such that \(B \leq_{T}^{p} S \) and
\[
A = \{ x \mid (\exists y)[B(x,y)] \}.
\]

2. A set \(A \) is in \(\Pi_{1}^{p, \text{Sparse}} \) if there exists a set \(B \) and a sparse set \(S \) such that \(B \leq_{T}^{p} S \) and
\[
A = \{ x \mid (\forall y)[B(x,y)] \}.
\]

3. For \(i \geq 2 \), \(A \in \Sigma_{i}^{p, \text{Sparse}} \) if there exists \(B \in \Pi_{i-1}^{p, \text{Sparse}} \) such that
\[
A = \{ x \mid (\exists y)[B(x,y)] \}.
\]

4. For \(i \geq 2 \), \(A \in \Pi_{i}^{p, \text{Sparse}} \) if there exists \(B \in \Pi_{i-1}^{p, \text{Sparse}} \) such that
\[
A = \{ x \mid (\forall y)[B(x,y)] \}.
\]

Our goal is to show that
\[
\text{SAT} \in \Pi_{1}^{p, \text{Sparse}} \rightarrow \Sigma_{3}^{p} = \Pi_{3}^{p}.
\]

We will need this lemma that we had before:

Lemma 1.2 Let \(M^{(i)} \) be a POTM and let \(S \) be a sparse set. Then there exists a PTM \(N \) and a polynomial \(p \) such that the following holds.
\[
(\forall n \in \mathbb{N})(\exists u, |u| = p(n))(\forall w \in \{0, 1\}^{\leq n})[M^{S}(w) = N(w; u)].
\]
Lemma 1.3 If $\Pi_1^p \subseteq \Sigma_1^p_{\text{SPARSE}}$ then $\Sigma_2^p_{\text{SPARSE}} \subseteq \Sigma_1^p_{\text{SPARSE}}$.

Proof: Let $A \in \Sigma_2^p_{\text{SPARSE}}$. Then by definition there exists a POTM $M^{(1)}$ and a sparse set S_1 such that

$$A = \{x \mid (\exists p)(\forall p y)(\forall p z)[M^{S_1}(x, y, z) = 1]\}.$$

Let p be such that M^{S_1} runs in time $p(n)$. Let N be the PTM obtained by applying Lemma 1.2 to $M^{(1)}$. So

$$(\forall n)(\exists p u)(\forall x \in \{0, 1\}^n)(\forall p y)(\forall p z)[M^{S_1}(x, y, z) = N(x, y, z; u)]$$

Let $B = \{(x, y, u) \mid (\forall p z)[N(x, y, z; u)] = 1\}$.

We can define A in terms of B as follows:

$$A = \{x \mid (\exists p u)(\exists p y)[(x, y, u) \in B \land (u \text{ codes } S_1 \cap \{0, 1\}^{\leq p(n)})]\}.$$

Note that $B \in \Pi_1^p$ (no oracle needed). By the hypothesis $B \in \Sigma_1^p_{\text{SPARSE}}$. Hence there exists a sparse set S_2 such that $B \leq_{\text{p}}^1 S_2$. Let $M_1^{(1)}$ be the POTM that does that reduction.

We now rewrite A:

$$A = \{x \mid (\exists p u)(\exists p y)[M_1^{S_2}(x, y, u) = 1 \land (u \text{ codes } S_1 \cap \{0, 1\}^{\leq p(n)})]\}.$$

How can we tell if u codes $S_1 \cap \{0, 1\}^{\leq p(n)}$? We can determine that u codes the set $\{v_1, \ldots, v_L\}$. If we have access to S_1 we can ask $v_i \in S_1$? If any of them say NO then u does not code $S_1 \cap \{0, 1\}^{\leq p(n)}$. If they all say YES we still do not know that u code $S_1 \cap \{0, 1\}^{\leq p(n)}$. It could be that there is some element of $S_1 \cap \{0, 1\}^{\leq p(n)}$ that is not in $\{v_1, \ldots, v_L\}$. We need a third sparse set to help us. Let $S_3 = \{< 0^n, |S \cap \{0, 1\}^{\leq n}| > \}$. So, to test if u codes $S_1 \cap \{0, 1\}^{\leq p(n)}$ we (1) ask, for each $i, 1 \leq i \leq L, v_i \in S_1$, (2) ask if $< 0^{p(n)}, L > \in$
If the answer to all of these questions is YES then u codes $S_1 \cap \{0, 1\} \leq^p \langle n \rangle$.
Else it does not.

Let S be a sparse oracle that encodes S_1, S_2, and S_3. Note that the set

$$\{(x, y, u) \mid M_{S_2}^S(x, y, u) = 1 \land (u \text{ codes } S_1 \cap \{0, 1\} \leq^p \langle n \rangle)\} \leq_T S$$

Hence we have shown that $A \in \Sigma_{i}^p, \text{SPARSE}.$

Exercise 1 Let S_1 and S_2 be sparse sets. Define a set S such that S is sparse, $S_1 \leq_m S$, and $S_2 \leq_m S$. **End of Exercise**

Exercise 2 Let $i, j \in \mathbb{N}$.
1. Show that if $\Pi_i^p \subseteq \Pi_j^p, \text{SPARSE}$ then $\Pi_i^p \subseteq \Sigma_j^p, \text{SPARSE}.$
2. Show that if $\Pi_i^p \subseteq \Pi_j^p, \text{SPARSE}$ then $\Sigma_i^p \subseteq \Sigma_j^p, \text{SPARSE}.$
3. Show that if $\Sigma_2^p, \text{SPARSE} \subseteq \Sigma_1^p, \text{SPARSE}$ then $\Sigma_3^p, \text{SPARSE} \subseteq \Sigma_1^p, \text{SPARSE}.$
4. Show that if $\Sigma_2^p, \text{SPARSE} \subseteq \Sigma_1^p, \text{SPARSE}$ then $(\forall k \geq 1)[\Sigma_k^p, \text{SPARSE} \subseteq \Sigma_1^p, \text{SPARSE}].$
5. Show that if $\Sigma_i^p, \text{SPARSE} \subseteq \Pi_j^p, \text{SPARSE}$ then $\Pi_i^p, \text{SPARSE} \subseteq \Sigma_j^p, \text{SPARSE}.$
6. Show that if $A \in \Sigma_i^p, \text{SPARSE}$ then $\overline{A} \in \Pi_i^p, \text{SPARSE}.$

End of Exercise

Our eventual goal is to show that if $\text{SAT} \in \Pi_1^p, \text{SPARSE}$ then $\Sigma_3^p = \Pi_3^p.$ Hence we need to look at sets that are complete for Σ_3^p or Π_3^p. We will look at sets of quantified boolean formulas. In what follows keep in mind that ϕ is an arbitrary Boolean formula and the quantifiers are over Boolean values 0 and 1.

Def 1.4
1. QBF_3 is the set of all sentences of the form

$$(\exists x_1, \ldots, x_{n_1})(\forall y_1, \ldots, y_{n_2})(\exists z_1, \ldots, z_{n_3})[\phi(x_1, \ldots, x_{n_1}, y_1 \ldots, y_{n_2}, z_1, \ldots, z_{n_3})]$$

that are true. (ϕ is quantifier free.)

This set is Σ_3^p-complete. Note that any of $n_1, n_2,$ or n_3 be 0, but not all three.
2. \overline{QBF}_3 is the set of all sentences of the form

$$(\forall x_1, \ldots, x_{n_1})(\exists y_1, \ldots, y_{n_2})(\forall z_1, \ldots, z_{n_3})[\phi(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}, z_1, \ldots, z_{n_3})]$$

that are true. (ϕ is quantifier free.)

This set is Π^p_3-complete. Note that any of $n_1, n_2,$ or n_3 be 0, but not all three.

We will use the following alternative definition of \overline{QBF}_3. The definition is inductive on the number of variables.

Def 1.5 A sentence ψ is in \overline{QBF}_3 if any of the following hold. (A sentence is NOT in \overline{QBF}_3 if none of them hold.) In the below items n_2 and/or n_3 could be 0 which will cover cases with less than three alternations of quantifiers.

1. $\psi = (\forall x)[\phi(x)]$ and both $\phi(0)$ and $\phi(1)$ are true.
2. $\psi = (\exists x)[\phi(x)]$ and either $\phi(0)$ or $\phi(1)$ is true.
3. $\psi = (\exists x_1, \ldots, x_{n_1})(\forall y_1, \ldots, y_{n_2})[\phi(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2})]$ and one of

 $$(\exists x_2, \ldots, x_{n_1})(\forall y_1, \ldots, y_{n_2})[\phi(0, x_2, \ldots, x_{n_1}, y_1, \ldots, y_{n_2})]$$
 or

 $$(\exists x_2, \ldots, x_{n_1})(\forall y_1, \ldots, y_{n_2})[\phi(1, x_2, \ldots, x_{n_1}, y_1, \ldots, y_{n_2})]$$

 is in \overline{QBF}_3. (Note that this is inducive on the number of variables. We are basing membership of ψ in \overline{QBF}_3 on membership of sentences with less variables.)

4. $\psi = (\forall x_1, \ldots, x_{n_1})(\exists y_1, \ldots, y_{n_2})(\forall z_1, \ldots, z_{n_3})[\phi(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}, z_1, \ldots, z_{n_3})]$ and both

 $$(\forall x_2, \ldots, x_{n_1})(\exists y_1, \ldots, y_{n_2})(\forall z_1, \ldots, z_{n_3})[\phi(0, x_2, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}, z_1, \ldots, z_{n_3})]$$

 and

 $$(\forall x_2, \ldots, x_{n_1})(\exists y_1, \ldots, y_{n_2})(\forall z_1, \ldots, z_{n_3})[\phi(1, x_2, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}, z_1, \ldots, z_{n_3})]$$

 are in \overline{QBF}_3. (Note that this is inducive on the number of variables. We are basing membership of ψ in \overline{QBF}_3 on membership of sentences with less variables.)
Exercise 3 Show that the definitions of QBF_3 in Definition 1.4.2 and 1.5 are equivalent. End of Exercise

Exercise 4 Show that if $QBF_3 \in \Sigma^p_3$ then $\Sigma^p_3 = \Pi^p_3$. End of Exercise

Lemma 1.6 If $\Pi^p_3, SPARSE \subseteq \Pi^p_3, SPARSE$ then $\Sigma^p_3 = \Pi^p_3$.

Proof:
To show that $\Sigma^p_3 = \Pi^p_3$ we show that $QBF_3 \in \Sigma^p_3$ and use Exercise above.
Clearly $QBF_3 \in \Pi^p_3 \subseteq \Pi^p_3,SPARSE$. Hence by hypothesis $QBF_3 \in \Pi^p_1,SPARSE$.
So there exists a POTM $M^{(1)}$ and a sparse set S such that

$$QBF_3 = \{ \psi \mid (\forall^p y)[M^S(\psi, y)] \}$$

Let N be the PTM obtained by applying Lemma 1.2 to $M^{(1)}$.
We are going to look at the set of sets of strings u that make $N(\psi, y; u) = M^S(\psi, y)$ for formulas of length $\leq n$ and y of the appropriate length.

$$ADV = \{(u, n) \mid (\forall \psi, |\psi| \leq n)[\psi \in QBF_3 \text{ iff } (\forall^p y)[N(\psi, y; u) = 1]]\}.$$ We assume that $N(\cdot)$ always outputs 0 or 1.
We show that we can express the set ADV in terms of quantifiers. We use the recursive definition of QBF_3 (Definition 1.5).
$(u, n) \in ADV$ iff for all ψ, $|\psi| \leq n$, the following hold. (The polynomial bounded quantifiers are bounded by a polynomial in n.)

1. Case 1: $\psi = (\forall x)[\phi(x)]$. ($x$ is a single Boolean variable)
 $$(\phi(0) \land \phi(1)) \land (\forall^p y)[N(\psi, y; u) = 1].$$

2. Case 2: $\psi = (\exists x)[\phi(x)]$. ($x$ is a single boolean variable.)
 $$(\phi(0) \lor \phi(1)) \land (\forall^p y)[N(\psi, y; u) = 1].$$
3. Case 3: \(\psi = (\exists x_1, \ldots, x_{n_1})(\forall y_1, \ldots, y_{n_2})[\phi(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2})] \).

(This includes the case of \(n_2 = 0 \).)

Let
\[
\psi_0 = (\exists x_2, \ldots, x_{n_1})(\forall y_1, \ldots, y_{n_2})[\phi(0, x_2, \ldots, x_{n_1}, y_1, \ldots, y_{n_2})]
\]
and
\[
\psi_1 = (\exists x_2, \ldots, x_{n_1})(\forall y_1, \ldots, y_{n_2})[\phi(1, x_2, \ldots, x_{n_1}, y_1, \ldots, y_{n_2})].
\]

\([\forall p y][N(\psi_0, y; u) = 1] \vee [\forall p y][N(\psi_1, y; u) = 1]\) \(\rightarrow\)
\([\forall p y][N(\phi, y; u) = 1] \wedge ([\exists p y][N(\psi_0, y; u) = 0] \vee [\exists p y][N(\psi_1, y; u) = 0]) \rightarrow [\exists p y][M^U(\phi, y) = 0].\)

4. Case 4:
\(\psi = (\forall x_1, \ldots, x_{n_1})(\exists y_1, \ldots, y_{n_2})(\forall z_1, \ldots, z_{n_3})[\phi(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}, z_1, \ldots, z_{n_3})] \)

(This includes the case of \(n_3 = 0 \).)

Let
\[
\psi_0 = (\forall x_2, \ldots, x_{n_1})(\exists y_1, \ldots, y_{n_2})(\forall z_1, \ldots, z_{n_3})[\phi(0, x_2, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}, z_1, \ldots, z_{n_3})]
\]
and
\[
\psi_1 = (\forall x_2, \ldots, x_{n_1})(\exists y_1, \ldots, y_{n_2})(\forall z_1, \ldots, z_{n_3})[\phi(1, x_2, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}, z_1, \ldots, z_{n_3})].
\]

The statement is:
\([\forall p y][N(\psi_0, y; u) = 1] \wedge [\forall p y][N(\psi_1, y; u) = 1] \rightarrow [\forall p y][M^U(\phi, y) = 1] \wedge [\exists p y][N(\psi_0, y; u) = 0] \vee [\exists p y][N(\psi_1, y; u) = 0] \rightarrow [\exists p y][N(\phi, y; u) = 0].\)

Exercise 5 Show that the two definitions of ADV given above are equivalent.

End of Exercise

Given the above we can rewrite ADV using two poly predicates \(B \) and \(C \) as follows:

\[
ADV = \{(u, n) \mid (\forall \psi)[(\exists p y)[B(\psi, y)] \wedge (\forall p z)[C(\psi, z)]]\}.
\]
This can easily be written in Π_p^2 form. So the upshot is that $ADV \in \Pi_p^2$.

Recall that

$$QBF_3 = \{ \psi \mid (\forall^p y)[M^S(\psi, y)] \}$$

We rewrite this in terms of saying that there exists a string in ADV that will help us.

$$QBF_3 = \{ \psi \mid (\exists u)[u \in ADV \land (\forall^p y)[N(\psi, y; u)] \}$$

Since $ADV \in \Pi_p^2$ and the other part of the internal statement is Π_p^1 we have that $QBF_3 \in \Sigma_p^3$.

Theorem 1.7

1. If $SAT \in \Pi_1^{p,\text{SPARSE}}$ then $\Sigma_3 = \Pi_3^p$.
2. If $TAUT \in \Sigma_1^{p,\text{SPARSE}}$ then $\Sigma_3 = \Pi_3^p$.

Proof:

1) If $SAT \in \Pi_1^{p,\text{SPARSE}}$ then, since SAT is NP-complete, $\Sigma_1^p \subseteq \Pi_1^{p,\text{SPARSE}}$.

 By Exercise 2.1 $\Pi_1^p \subseteq \Sigma_2^{p,\text{SPARSE}}$

 By Lemma 1.3 $\Sigma_2^{p,\text{SPARSE}} \subseteq \Sigma_1^{p,\text{SPARSE}}$.

 By Exercise 2.3 $\Sigma_3^{p,\text{SPARSE}} \subseteq \Sigma_1^{p,\text{SPARSE}}$.

 By Exercise 2.5 $\Pi_3^{p,\text{SPARSE}} \subseteq \Pi_1^{p,\text{SPARSE}}$.

 By Lemma 1.6 $\Sigma_3^p = \Pi_3^p$.

2) If $TAUT \in \Sigma_1^{p,\text{SPARSE}}$ then by Exercise 2.6 $SAT \in \Pi_1^{p,\text{SPARSE}}$. By part 1 we have $\Sigma_3^p = \Pi_3^p$.

2 A Different View of Sparseness

Def 2.1 A set A is in P/poly if there exists a polynomial p, a function $ADV : 0^* \rightarrow \{0, 1\}^*$, and a polynomial predicate B such that the following hold.

1. For all n, $ADV(0^n) \in \{0, 1\}^{p(n)}$.

2. For all n

$$A \cap \{0, 1\}^{\leq n} = \{x \mid B(x, \text{ADV}(0^n))\}.$$

We think of the string $\text{ADV}(0^n)$ as giving advice for all strings of length $\leq n$. The class P/poly is often referred to as ‘poly time with advice’.

We leave the following as an exercise.

Lemma 2.2 Let $A \subseteq \{0, 1\}^*$. The following are equivalent.

1. $A \leq^p_T S$ where S is sparse set.
2. $A \in P/\text{poly}$.

We can also look at Σ^p_i with advice.

Def 2.3 We assume that i is odd. For i even a similar definition holds. A set A is in Σ^p_i/poly if there exists a polynomial p, a function $\text{ADV} : 0^* \rightarrow \{0, 1\}^*$, and a polynomial predicate B such that the following hold.

1. For all n, $\text{ADV}(0^n) \in \{0, 1\}^{p(n)}$.
2. For all n

$$A \cap \{0, 1\}^n = \{x \mid (\exists y_1)(\forall y_2)\cdots(\exists y_i)[B(x, y_1, y_2, \ldots, y_i, \text{ADV}(0^n))].$$

Note 2.4 Σ^p_i/poly we refer to as $\text{NP/\text{poly}}$.

We leave the following as an exercise.

Lemma 2.5 Let $A \subseteq \{0, 1\}^*$. The following are equivalent.

1. $A \in \Sigma^{n, \text{SPARSE}}_i$.
2. $A \in \Sigma^p_i/\text{poly}$.

We also need the following which we leave as an exercise.

Notation 2.6 If X and Y are sets then $X \Delta Y$ is $(X - Y) \cup (Y - X)$. Note that $X \Delta Y$ is the set of elements where X and Y differ.
Lemma 2.7 Let $A, A' \subseteq \{0, 1\}^*$. If there exists a polynomial s such that, for all n,
\[|(A \cap \{0, 1\}^{\leq n}) \Delta (A' \cap \{0, 1\}^{\leq n})| \leq s(n)\]
then $A \in \Sigma_i^{p, \text{SPARSE}}$ iff $A' \in \Sigma_i^{p, \text{SPARSE}}$. (We are saying that if A and A' only differ by a polynomial amount on each length n, then A and A' are similar enough that they are either both in $\Sigma_i^{p, \text{SPARSE}}$ or both not in $\Sigma_i^{p, \text{SPARSE}}$.)

We restate The Karp Lipton Theorem and Yaps theorem for the contrast:

Karp Lipton Theorem:
\textbf{If} $SAT \in \text{P/poly}$ \textbf{then} $PH = \Sigma_2^p = \Pi_2^p$

Yap’s Theorem:
\textbf{If} $SAT \in \text{co-NP/poly}$ \textbf{then} $PH = \Sigma_3^p = \Pi_3^p$