
Sparse Sets IV: SAT in coNP-sparse
Exposition by William Gasarch

1 SAT ∈ Πp,SPARSE
1 then Σp

3 = Πp
3

Recall that A ∈ Σp
1 if there exists B ∈ P such that

A = {x | (∃py)[B(x, y)]}.

Notation 1.1

1. A set A is in Σp,SPARSE
1 if there exists a set B and a sparse set S such

that B ≤p
T S and

A = {x | (∃py)[B(x, y)]}.

2. A set A is in Πp,SPARSE
1 if there exists a set B and a sparse set S such

that B ≤p
T S and

A = {x | (∀py)[B(x, y)]}.

3. For i ≥ 2, A ∈ Σp,SPARSE
i if there exists B ∈ Πp,SPARSE

i−1 such that

A = {x | (∃py)[B(x, y)]}.

4. For i ≥ 2, A ∈ Πp,SPARSE
i if there exists B ∈ Πp,SPARSE

i−1 such that

A = {x | (∀py)[B(x, y)]}.

Our goal is to show that

SAT ∈ Πp,SPARSE
1 → Σp

3 = Πp
3.

We will need this lemma that we had before:

Lemma 1.2 Let M () be a POTM and let S be a sparse set. Then there
exists a PTM N and a polynomial p such that the following holds.

(∀n ∈ N)(∃u, |u| = p(n))(∀w ∈ {0, 1}≤n)[MS(w) = N(w;u)].
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Lemma 1.3 If Πp
1 ⊆ Σp,SPARSE

1 then Σp,SPARSE
2 ⊆ Σp,SPARSE

1 .

Proof: Let A ∈ Σp,SPARSE
2 . Then by definition there exists a POTM M ()

and a sparse set S1 such that

A = {x | (∃py)(∀pz)[MS1(x, y, z) = 1]}.
Let p be such that MS1 runs in time p(n).
Let N be the PTM obtained by applying Lemma 1.2 to M () . So

(∀n)(∃pu)(∀x ∈ {0, 1}n)(∀py)(∀pz)[MS1(x, y, z) = N(x, y, z, ;u)]

Let

B = {〈x, y, u〉 | (∀pz)[N(x, y, z;u)] = 1}.
We can define A in terms of B as follows:

A = {x | (∃pu)(∃py)[〈x, y, u〉 ∈ B ∧ (u codes S1 ∩ {0, 1}≤p(n))}.

Note that B ∈ Πp
1 (no oracle needed). By the hypothesis B ∈ Σp,SPARSE

1 .

Hence there exists a sparse set S2 such that B ≤p
T S2. Let M

()
1 be the POTM

that does that reduction.
We now rewrite A:

A = {x | (∃pu)(∃py)[MS2
1 (x, y, u) = 1 ∧ (u codes S1 ∩ {0, 1}≤p(n))}.

How can we tell if u codes S1 ∩ {0, 1}≤p(n)? We can determine that u
codes the set {v1, . . . , vL}. If we have access to S1 we can ask v1 ∈ S1?, . . .,
vL ∈ S? If any of them say NO then u does not code S1∩{0, 1}≤p(n). If they
all say YES we still do not know that u code S1 ∩ {0, 1}≤p(n). It could be
that there is some element of S1 ∩ {0, 1}≤p(n) that is not in {v1, . . . , vL}. We
need a third sparse set to help us. Let

S3 = {< 0n, |S ∩ {0, 1}≤n| > :;n ∈ N}.

We can also assume we know the polynomial p. So, to test if u codes S1 ∩
{0, 1}≤p(n) we (1) ask, for each i, 1 ≤ i ≤ L, vi ∈ S1, (2) ask if < 0p(n), L >∈
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S3. If the answer to all of these questions is YES then u codes S1∩{0, 1}≤p(n).
Else it does not.

Let S be a sparse oracle that encodes S1, S2, and S3. Note that the set

{(x, y, u) |MS2
B (x, y, u) = 1 ∧ (u codes S1 ∩ {0, 1}≤p(n))} ≤p

T S

Hence we have shown that A ∈ Σp,SPARSE
1 .

Exercise 1 Let S1 and S2 be sparse sets. Define a set S such that S is
sparse, S1 ≤p

m S, and S2 ≤p
m S. End of Exercise

Exercise 2 Let i, j ∈ N.

1. Show that if Σp
i ⊆ Πp,SPARSE

j then Πp
i ⊆ Σp,SPARSE

j .

2. Show that if Πp
i ⊆ Πp,SPARSE

j then Σp
i ⊆ Σp,SPARSE

j .

3. Show that if Σp,SPARSE
2 ⊆ Σp,SPARSE

1 then Σp,SPARSE
3 ⊆ Σp,SPARSE

1 .

4. Show that if Σp,SPARSE
2 ⊆ Σp,SPARSE

1 then, (∀k ≥ 1)[Σp,SPARSE
k ⊆ Σp,SPARSE

1 ].

5. Show that if Σp,SPARSE
i ⊆ Πp,SPARSE

j then Πp,SPARSE
i ⊆ Σp,SPARSE

j .

6. Show that if A ∈ Σp,SPARSE
i then A ∈ Πp,SPARSE

i .

End of Exercise
Our eventual goal is to show that if SAT ∈ Πp,SPARSE

1 then Σp
3 = Πp

3.
Hence we need to look at sets that are complete for Σp

3 or Πp
3. We will look

at sets of quantified boolean formulas. In what follows keep in mind that φ
is an arbitrary Boolean formula and the quantifiers are over Boolean values
0 and 1.

Def 1.4

1. QBF3 is the set of all sentences of the form

(∃x1, . . . , xn1)(∀y1, . . . , yn2)(∃z1, . . . , zn3)[φ(x1, . . . , xn1 , y1 . . . , yn2 , z1, . . . , zn3)]

that are true. (φ is quantifier free.)

This set is Σp
3-complete. Note that any of n1, n2, or n3 be 0, but not

all three.
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2. QBF 3 is the set of all sentences of the form

(∀x1, . . . , xn1)(∃y1, . . . , yn2)(∀z1, . . . , zn3)[φ(x1, . . . , xn1 , y1 . . . , yn2 , z1, . . . , zn3)]

that are true. (φ is quantifier free.)

This set is Πp
3-complete. Note that any of n1, n2, or n3 be 0, but not

all three.

We will use the following alternative definition of QBF 3. The definition
is inductive on the number of variables.

Def 1.5 A sentence ψ is in QBF 3 if any of the following hold. (A sentence is
NOT in QBF 3 if none of them hold.) In the below items n2 and/or n3 could
be 0 which will cover cases with less than three alternations of quantifiers.

1. ψ = (∀x)[φ(x)] and both φ(0) and φ(1) are true.

2. ψ = (∃x)[φ(x)] and either φ(0) or φ(1) is true.

3. ψ = (∃x1, . . . , xn1)(∀y1, . . . , yn2)[φ(x1, . . . , xn1 , y1, . . . , yn2)] and one of

(∃x2, . . . , xn1)(∀y1, . . . , yn2)[φ(0, x2, . . . , xn1 , y1, . . . , yn2)] or

(∃x2, . . . , xn1)(∀y1, . . . , yn2)[φ(1, x2, . . . , xn1 , y1, . . . , yn2)]

is in QBF 3. (Note that this is inducive on the number of variables.
We are basing membership of ψ in QBF 3 on membership of sentences
with less variables.)

4. ψ = (∀x1, . . . , xn1)(∃y1, . . . , yn2)(∀z1, . . . , zn3)[φ(x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3)]
and both

(∀x2, . . . , xn1)(∃y1, . . . , yn2)(∀z1, . . . , zn3)[φ(0, x2, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3)]
and

(∀x2, . . . , xn1)(∃y1, . . . , yn2)(∀z1, . . . , zn3)[φ(1, x2, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3)]

are in QBF 3. (Note that this is inducive on the number of variables.
We are basing membership of ψ in QBF 3 on membership of sentences
with less variables.)
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Exercise 3 Show that the definitions of QBF 3 in Definition 1.4.2 and 1.5
are equivalent. End of Exercise
Exercise 4 Show that if QBF 3 ∈ Σp

3 then Σp
3 = Πp

3. End of Exercise

Lemma 1.6 If Πp,SPARSE
3 ⊆ Πp,SPARSE

1 then Σp
3 = Πp

3.

Proof:
To show that Σp

3 = Πp
3 we show that QBF 3 ∈ Σp

3 and use Exercise above.
Clearly QBF 3 ∈ Πp

3 ⊆ Πp,SPARSE
3 . Hence by hypothesis QBF 3 ∈ Πp,SPARSE

1 .
So there exists a POTM M () and a sparse set S such that

QBF 3 = {ψ | (∀py)[MS(ψ, y)]}

Let N be the PTM obtained by applying Lemma 1.2 to M ().
We are going to look at the set of sets of strings u that make N(ψ, y;u) =

MS(ψ, y) for formulas of length ≤ n and y of the appropriate length.

ADV = {(u, n) | (∀ψ, |ψ| ≤ n)[ψ ∈ QBF 3 iff (∀py)[N(ψ, y;u) = 1]]}.

We assume that N(; ) always outputs 0 or 1.
We show that we can express the set ADV in terms of quantifiers. We

use the recursive definition of QBF 3 (Definition 1.5).
(u, n) ∈ ADV iff for all ψ, |ψ| ≤ n, the following hold. (The polynomial

bounded quantifiers are bounded by a polynomial in n.)

1. Case 1: ψ = (∀x)[φ(x)]. (x is a single Boolean variable)

(φ(0) ∧ φ(1)) → (∀py)[N(ψ, y;u) = 1].

∧
(¬φ(0) ∨ ¬φ(1)) → (∃py)[N(ψ, y;u) = 0].

2. Case 2: ψ = (∃x)[φ(x)]. (x is a single boolean variable.)

(φ(0) ∨ φ(1)) → (∀py)[N(ψ, y;u) = 1]

∧
(¬φ(0) ∧ ¬φ(1)) → (∃py)[N(ψ, y;u) = 0].
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3. Case 3: ψ = (∃x1, . . . , xn1)(∀y1, . . . , yn2)[φ(x1, . . . , xn1 , y1, . . . , yn2)].

(This includes the case of n2 = 0.)

Let

ψ0 = (∃x2, . . . , xn1)(∀y1, . . . , yn2)[φ(0, x2, . . . , xn1 , y1, . . . , yn2)]

and

ψ1 = (∃x2, . . . , xn1)(∀y1, . . . , yn2)[φ(1, x2, . . . , xn1 , y1, . . . , yn2)].

((∀py)[N(ψ0, y;u) = 1] ∨ (∀py)[N(ψ1, y;u) = 1]) →
(∀py)[N(φ, y;u) = 1].

∧
((∃py)[N(ψ0, y;u) = 0] ∧ (∃py)[N(ψ1, y;u) = 0]) →

(∃py)[MU(ψ, y) = 0].

4. Case 4:

ψ = (∀x1, . . . , xn1)(∃y1, . . . , yn2)(∀z1, . . . , zn3)[φ(x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3)]

(This includes the case of n3 = 0.)

Let

ψ0 = (∀x2, . . . , xn1)(∃y1, . . . , yn2)(∀z1, . . . , zn3)[φ(0, x2, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3)]

and

ψ1 = (∀x2, . . . , xn1)(∃y1, . . . , yn2)(∀z1, . . . , zn3)[φ(1, x2, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3)].

The statement is:

(∀py)[N(ψ0, y;u) = 1] ∧ (∀py)[N(ψ1, y;u) = 1] → (∀py)[MU(φ, y) = 1].

∧
(∃py)[N(ψ0, y;u) = 0]∨ (∃py)[N(ψ1, y;u) = 0] → (∃py)[N(φ, y;u) = 0].

Exercise 5 Show that the two defintions of ADV given above are equivalent.
End of Exercise

Given the above we can rewrite ADV using two poly predicates B and
C as follows:

ADV = {(u, n) | (∀ψ)[(∃py)[B(ψ, y)] ∧ (∀pz)[C(ψ, z)]]}
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This can easily be written in Πp
2 form. So the upshot is that ADV ∈ Πp

2.
Recall that

QBF 3 = {ψ | (∀py)[MS(ψ, y)]}

We rewrite this in terms of saying that there exists a string in ADV that
will help us.

QBF 3 = {ψ | (∃pu)[u ∈ ADV ∧ (∀py)[N(ψ, y;u)]}

Since ADV ∈ Πp
2 and the other part of the internal statement is Πp

1 we
have that QBF 3 ∈ Σp

3.

Theorem 1.7

1. If SAT ∈ Πp,SPARSE
1 then Σp

3 = Πp
3.

2. If TAUT ∈ Σp,SPARSE
1 then Σp

3 = Πp
3.

Proof:
1)

If SAT ∈ Πp,SPARSE
1 then, since SAT is NP-complete, Σp

1 ⊆ Πp,SPARSE
1 .

By Exercise 2.1 Πp
1 ⊆ Σp,SPARSE

1 .
By Lemma 1.3 Σp,SPARSE

2 ⊆ Σp,SPARSE
1 .

By Exercise 2.3 Σp,SPARSE
3 ⊆ Σp,SPARSE

1 .
By Exercise 2.5 Πp,SPARSE

3 ⊆ Πp,SPARSE
1 .

By Lemma 1.6 Σp
3 = Πp

3.

2)
If TAUT ∈ Σp,SPARSE

1 then by Exercise 2.6 SAT ∈ Πp,SPARSE
1 . By part 1

we have Σp
3 = Πp

3.

2 A Different View of Sparseness

Def 2.1 A set A is in P/poly if there exists a polynomial p, a function
ADV : 0∗ → {0, 1}∗, and a polynomial prediate B such that the following
hold.

1. For all n, ADV(0n) ∈ {0, 1}p(n).
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2. For all n
A ∩ {0, 1}≤n = {x | B(x,ADV(0n))}.

We think of the string ADV(0n) as giving advice for all strings of length
≤ n. The class P/poly is often refered to as ‘poly time with advice’.

We leave the following as an exercise.

Lemma 2.2 Let A ⊆ {0, 1}∗. The following are equivalent.

1. A ≤p
T S where S is sparse set.

2. A ∈ P/poly.

We can also look at Σp
i with advice.

Def 2.3 We assume that i is odd. For i even a similar definition holds. A set
A is in Σp

i /poly if there exists a polynomial p, a function ADV : 0∗ → {0, 1}∗,
and a polynomial prediate B such that the following hold.

1. For all n, ADV(0n) ∈ {0, 1}p(n).

2. For all n

A ∩ {0, 1}n = {x | (∃y1)(∀y2) · · · (∃yi)[B(x, y1, y2, . . . , yi,ADV(0n))]}.

Note 2.4 Σp
1/poly we refer to as NP/poly.

We leave the following as an exercise.

Lemma 2.5 Let A ⊆ {0, 1}∗. The following are equivalent.

1. A ∈ Σp,SPARSE
i .

2. A ∈ Σp
i /poly.

We also need the following which we leave as an exercise.

Notation 2.6 If X and Y are sets then X∆Y is (X − Y ) ∪ (Y −X). Note
that X∆Y is the set of elements where X and Y differ.
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Lemma 2.7 Let A,A′ ⊆ {0, 1}∗. If there exists a polynomial s such that,
for all n,

|(A ∩ {0, 1}≤n)∆(A′ ∩ {0, 1}≤n| ≤ s(n)

then A ∈ Σp,SPARSE
i iff A′ ∈ Σp,SPARSE

i . (We are saying that if A and A′ only
differ by a polynomial amount on each length n, then A and A′ are similar
enough that they are either both in Σp,SPARSE

i or both not in Σp,SPARSE
i .)

We restate The Karp Lipton Theorem and Yaps theorem for the contrast:
Karp Lipton Theorem:
If SAT ∈ P/poly then PH = Σp

2 = Πp
2

Yap’s Theorem:
If SAT ∈ co-NP/poly then PH = Σp

3 = Πp
3
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