
Sparse Sets II: Showing SAT ≤m S → P = NP Using Chains
Exposition by William Gasarch

1 Introduction

We give another proof that if SAT ≤m S then P = NP . Recall the definition
of LSAT .

Def 1.1 LSAT (called Left Sat) is the set of ordered pairs (φ, z) such that

1. φ is a Boolean formula. Let n be the number of variables.

2. z ∈ {0, 1}n is viewed as an assignment.

3. There exists x � z such that φ(x).

LSAT has a very nice property which we define more generally.

Def 1.2 A set A is 1-word self reducible if there is a function g : A →
A ∪ {Y,N} such that the following hold:

1. If g(x) = Y then x ∈ A.

2. If g(x) = N then x /∈ A.

3. If g(x) /∈ {Y,N} then (1) g(x) < x in the lexicographic order, and (2)
x ∈ A iff g(x) ∈ A.

Exercise 1: Show that LSAT is 1-word self-reducible.

Def 1.3 If z ∈ {0, 1}n − 0n then z− is the element of {0, 1}n that is JUST
below z in the lex ordering.
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2 Intuitions and Chains

Assume for this section that we have the following:

1. S is a sparse set. s(n) is the polynomial such that |S ∩{0, 1}n| ≤ s(n).

2. g is the function from Exercise 1 for LSAT .

Given φ, we want to determine if φ ∈ SAT . Assume φ has n variables.
We think of this as trying to determine if (φ, 1n) ∈ LSAT .
Bad Idea I: Let g be the function from Exercise 1.

Try to build a chain from (φ, 1n) down to (φ, 0n).
(φ, 1n) ∈ LSAT iff g(φ, 1n) ∈ LSAT iff g(g(φ, 1n)) ∈ LSAT etc.
The good news is that everytime we apply g we get a z-value that is

(one) lower in the lex ordering, since g(φ, z) is of the form (φ, z−). More
good news- each step is easy to compute.

The bad news- it will take 2n steps before we get to (φ, 0n).
The bad news sociologically- I didn’t use the reduction to a sparse set.

Bad Idea II: Again let f(φ, 1n) = w. Try to find a z such that f(φ, z) = w.
If so then we have

(φ, 1n) ∈ LSAT iff (φ, z) ∈ LSAT.

This may be getting us closer to (φ, 0n). However, if we keep doing this
we could, as in Bad Idea I, be taking steps towards (φ, 0n) that are too small
to get there in polynomial time. Also, how do we find such a z?

Note that we do have two different ways to have membership-in-LSAT
be equivalent:

(φ, z) ∈ LSAT iff g(φ, z) ∈ LSAT.

and also
If f(φ, z) = f(φ, z′) then

(φ, z) ∈ LSAT iff (φ, z′) ∈ LSAT.

We will use both of these to march towards 0n. However realize- we might
not get there!! We will set things up so that we either make progress or find
out directly if (φ, 1n) ∈ LSAT .
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Def 2.1 A chain of length m is a sequence of the form

• ((φ, z1), w1))

• ((φ, z2), w2))

• ...

• ((φ, zm, ), wm))

such that the following hold.

1. z1 > z2 > · · · > zm in lex order.

2. For all j, k
(φ, zj) ∈ LSAT iff (φ, zk) ∈ LSAT.

(Hence either all of the pairs are in LSAT or all are not in.

3. For all j, f(φ, zj) = wj. (Hence, given the last point, either all of the
w’s are in S or all are not in S.)

4. All of the wi are DIFFERENT.

Good Idea: We will try to build a chain. One of two things must happen.

1. The chain will go all the way down to (φ, 0n).

2. The chain goes long enough that not all of the (different!) values of w’s
can be in S. Hence at least one is not in S. By the defintion of chain,
none of them are in S, and we know that (φ, 1n) /∈ LSAT .

3 The Key Lemma

Lemma 3.1 Assume there is a sparse set S such that LSAT ≤p
m S. Then

there is a polynomial time algorithm that does the following. The input is a
chain of length m whose last element zm 6= 0n. The output is either

1. ((φ, zm+1, wm+1) that extends the chain, or
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2. The membership status in LSAT of every (φ, z) on the chain. This
includes (φ, 1n) so we are DONE.

Proof:
Here is the algorithm

1. Input is

• ((φ, z1), w1))

• ((φ, z2), w2))

• ...

• ((φ, zm), wm))

2. Compute (φ, y) = g(φ, zm). Compute w = f(φ, z). If w /∈ {w1, . . . , wm}
then

(a) zm+1 = zm
−

(b) wm+1 = w.

(c) Note that zm+1 = z−m < zm. Note that (φ, zm+1) ∈ LSAT iff
(φ, zm) ∈ LSAT .

3. (If you got here then f(g(φ, zm)) ∈ {w1, . . . , wm}.) Compute f(φ, 0n).
If it is in {w1, . . . , wm} then AH-HA! We know that (φ, 1n) ∈ LSAT
iff (φ, 0n) ∈ LSAT . We can determine (φ, 0n) ∈ LSAT in polynomial
time. We do so, output the answer, and EXIT.

4. Let zbegin = zm and zend = 0n. KEY PROPERTY: f(φ, zbegin) ∈
{w1, . . . , wm} but f(φ, zend) /∈ {w1, . . . , wm}.

5. Let zmid be the value halfway between zbegin and zend lexicographically.

6. Compute {f(φ, zmid) If f(φ, zmid) ∈ {w1, . . . , wm} then zbegin = zmid else
zend = zmid. NOTE- (verify for yourself). KEY PROPERTY STILL
HOLDS.

7. If zend = z−begin then compute g(φ, zbegin). If its Y then we are DONE-
(φ, 1n) ∈ LSAT . If not then its (φ, (zbegin)

−) = (φ, zend). So we have
(φ, zbegin) ∈ LSAT iff (φ, zend) ∈ LSAT . And we also have f(φ, zend) 6=
{w1, . . . , wm}. So we can extend the chain by (φ, zend, f(φ, zend)).

4



4 The Main Theorem

Theorem 4.1 If there exists a sparse set S such that SAT ≤p
m S then

SAT ∈ P .

Proof: If SAT ≤p
m S then

LSAT ≤p
m S.

Let f be the reduction and let p be the polynomial that bounds its running
time. Let S be s(n)-sparse. That is, |S ∩ {0, 1}n| ≤ s(n).

Here is the algorithm.

1. Input φ. n be the number of variables in φ. Note that |f(φ, y)| ≤ p(n).

2. Let z1 = 1n, and w1 = f(φ, z1). View ((φ, z1), w1) as the first element
of a chain.

3. Apply the algorithm from Lemma 3.1 over and over again to the chain
until one of the following occurs.

(a) The algorithm returns the actual answer to (φ, z1) ∈ LSAT . Out-
put that answer and EXIT.

(b) The algorithm returns with (φ, 0n). The question (φ, 0n) ∈ LSAT
can easily be answered. Do so and output the answer.

(c) The chain has s(p(n))+1 elements in it. Since S is sparse and the
reduction is time p(n), these numbers cannot all be in S. Hence
there exists some wi /∈ S. By the defintion of a chain, none of
them are in LSAT . Output NO and EXIT.
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