Uniformly Hard Languages*

Rod Downey' Lance Fortnow?
Victoria University University of Chicago

February 17, 2014

Abstract

Ladner [18] showed that there are no minimal recursive sets under polynomial-time reduc-
tions. Given any recursive set A, Ladner constructs a set B such that B strictly reduces to
A but B does not lie in P. The set B does have very long sequences of input lengths of easily
computable instances.

We examine whether Ladner’s results hold if we restrict ourselves to “uniformly hard lan-
guages” which have no long sequences of easily computable instances. Under a hard to disprove
assumption, we show that there exists a minimal recursive uniformly hard set under honest
many-one polynomial-time reductions.

1 Introduction

When we look at the complexity class NP of problems computable in nondeterministic polynomial
time, we usually consider two groups of problems: Those which have efficient solutions (P) and
those which are as hard as any other problem in NP (NP-complete). These two groups may not
cover all problems, there may be problems that are too hard to be in P but not hard enough to be
NP-complete.

If P = NP then all of the NP problems collapse to P and no such incomplete problems occur.
Ladner [18] shows this is the only case.

Theorem 1.1 (Ladner) If P # NP then there exist sets in NP that are neither in P nor NP-
complete.

*This paper first appeared in preliminary form in the Proceedings of the 13th TEEE Conference on Computational
Complexity. Much of the research of this paper occurred while both authors were visiting Cornell University.

tPartially supported by New Zealand Marsden Fund for basic science via grant 95-VIC-MIS-0698 under contract
VIC-509. Address: School of Mathematical and Computing Sciences, Victoria University, P. O. Box 600, Wellington,
New Zealand. Email: downey@math.vuw.ac.nz. http://www.mcs.vuw.ac.nz/people/Rod-Downey.shtml.

tSupported in part by NSF grant CCR 92-53582. Current Address: NEC Research Institute, 4 Independence Way,
Princeton, NJ 08540, USA. Email: fortnow@research.nj.nec.com. http://www.neci.nj.nec.com/homepages/fortnow.

While Theorem 1.1 is widely quoted, the proof is not necessarily widely known. We give two
distinct proofs of this result in Appendix A.

These proofs give much more than Theorem 1.1. Polynomial time reducibilities calibrate lan-
guages into equivalence classes of the same level of complexity. The equivalence classes are called
degrees. One example of a degree is the collection of NP-complete languages. The polynomial
time degrees form a partial ordering where a < b iff there is a polynomial time procedure ¢ and
languages A € a, B € b such that ® reduces A to B. The proofs in Appendix A can be easily
modified to show that the polynomial time degrees of computable languages are a dense partial
ordering.

Theorem 1.2 (Ladner) For every computable language B not in P, there exists a language A
such that

1. A isnotin P
2. A polynomial-time many-one reduces to B

3. B does not polynomial-time many-one reduce to A.

In the proof given in Appendix A.1, as with most reductions arising from concrete problems,
the reduction from A to SAT is honest, in the sense that the size of the query is the same as that
of the string. (Here, it is x € A iff f(|z|) is even and z is in SAT.) Thus we remark that the
generalization of Ladner’s theorem, proven by this method, actually establishes the following.

Theorem 1.3 (Ladner) For every computable language B not in P, there exists a language A
such that

1. Ais notin P
2. A polynomial-time honest many-one reduces to B

3. B does not polynomial-time honest many-one reduce to A.

In the crudest terms, the proof in Appendix A.1 works by cutting holes out of SAT, the language
of satisfiable Boolean formulae. The remaining language A contains enough of SAT to be hard but
enough holes to not be NP-complete. The length of the holes may be very long to give the language
enough time to “look back” to see when a requirement is fulfilled.

The proof is in some sense unsatisfying. At the point of view of some input length, the language
A either looks very hard (like SAT) or very easy (the empty set). The candidates we have for natural
incomplete problems, factoring, graph isomorphism, discrete logarithm, for example, probably do
not have this property. Rather they are “uniformly” harder than P and not NP-complete.

Can we use the techniques of Ladner to create these kinds of incomplete sets? We give evidence
against this possibility.

To understand the issue, we first define a notion of “uniform hardness” where a language B is
uniformly hard if for every A in P there are not arbitrarily large polynomial input ranges where B
and A agree.

The language A created by the construction in Appendix A.l is not even close to uniformly
hard. Note that the proof in Appendix A.2 also is not uniformly hard: Since f(n) grows greater
than any fixed polynomial then f(n) — f(n — 1) also does and there are arbitrarily polynomially
large input ranges in L which are empty. However, in the proof from Appendix A.2 the reduction
given from L to SAT is not honest.

These observations inspires the following conjecture.

Conjecture 1.4 If there exist uniformly hard sets in NP then there exists incomplete uniformly
hard sets.

We show that under a hard to disprove assumption there exists minimal recursive uniformly hard
sets under polynomial-time honest many-one reductions. This shows that Ladner’s proof techniques
must produce sets with long sequences of easy instances. Finding nonuniform incomplete sets, at
least for honest reductions, will require new techniques.

1.1 An Historical Perspective

The realization that virtually all combinatorial reductions arising from concrete problems were
honest (such as those of Karp [17] and Garey and Johnson [12]) came very early, and strong forms
of this observation gave rise to conjectures such as the Isomorphism Conjecture of Berman and
Hartmanis [8].

Examining the structure of (the degrees of) computable sets under various polynomial-time
reductions has a long history. Ladner [18] has the fundamental paper in this area, demonstrating
considerable richness in the structures, showing that, for instance for honest and standard poly-
nomial time m—, tt—, and T— reducibilities, there were minimal pairs and that the structure was
dense. In that paper Ladner introduced what has proven to be the fundamental technique of “de-
layed diagonalization” which in many instances is applied by making a language essentially trivial
“long enough” to cause some desired diagonalization. For instance, in the density theorem, as we
observed above, Ladner’s proof works by creating a set B which alternates between looking like A
and looking like some set in P such as (). These alternations may take a very long time and thus
cause B to look like an easy set for very long sequences of input lengths. This technique is ubiqui-
tous in the area. For instance, see Balcdzar et. al. [7], Balcazar and Diaz [6], Landweber et. al. [20],
Chew and Machtey [10], Homer [14], Regan [23], Schoning [24], and Ambos-Spies [1, 3]. It is even
the case that most applications of the so-called “speedup technique” have at their heart a Ladner-
type strategy. We refer to, for instance, Downey [11], Shinoda-Slaman [25], Ambos-Spies [2], or

Shore-Slaman [26].

One of the key motivations for the study of these structures is to give insight into the natures
of computation, nondeterminism, and feasibility. From this point of view much of this work can
have a somewhat unsatisfactory flavor. Wolfgang Maass coined the phrase “punching large holes in
sets.” In terms of concrete complexity of natural problems, it seems unsatisfactory to say that if P
NP then there are problems of intermediate degree because we punch large holes in the language
simply because we can exploit the guaranteed totality of the reductions. (The point is that precisely
that the arguments given in Appendix A both work in the case of the classical truth table degrees
above the computability-theoretical degree of the halting problem.) Often one feels that one is
doing elementary set theory rather than complexity-theory. In this light the first motivation of the
present paper is to ask what the universe looks like is we only restrict our attention to languages
where we won’t punch large holes in the languages.

A second related motivation comes from the point of view that the current evidence suggests
that not only does P # NP, but hard instances occur fairly often. We have tried to capture this
idea in the notion of uniform hardness. Here we ask that not only is the language not feasibly
computable but it has no long easy intervals. From the point of view that SAT is like this, it is
very natural to study such languages.

Our final motivation is to attempt to relate some complexity-theoretical hypotheses to structural
ones for appropriate reducibilities. Homer [15] has one example for the noncomputable languages
under honest polynomial time reductions. Specifically, Homer proved that there if P = NP then
there exist minimal honest polynomial time degrees. Homer’s languages are necessarily noncom-
putable, since Ladner’s argument above demonstrates that there are no minimal honest polynomial
time computable degrees. In our setting we get a nice consequence of the hypothesis that P =
PSPACE. It seems that getting the consequence to fail is related not to punching holes in lan-
guages, but to the existence of certain types of one-way functions, although we do not explore this
here.

2 Uniformly Hard Sets

We define “uniformly hard sets” to capture the notion of sets that do not have large gaps where
they may be easily computable.

Definition 2.1 Let m,n € N. For A C ¥* we let A | [m,n] denote
{z e A:m <|z|] <n}.
If n =m we write A7 [n].
Definition 2.2 We say that A C X* is uniformly hard iff for any language B € P, thereis a k € N

such that for all m > 2,
AT [m,m* # B 1 [m,m"].

The reader should note that an equivalent definition would say that A 1 [m, m*] # B 1 [m, m*]
for sufficiently large m. Uniform hardness is not nearly as restrictive as almost-everywhere hardness
as defined by Geske [13], where no polynomial-time algorithm can accurately characterize an infinite
subset of the strings.

Definition 2.3 A set A is polynomial-time many-one honest reducible to B if there exists a
polynomial-time computable function f and a polynomial p such that

1. f: ¥ =¥ U{T,F}

2. If f(z) € &* then p(|f(z)|) > |z| (honesty)

3. z € Aif and only if f(x) € BU{T}.

We require honesty so we can find inverses to f using our P = PSPACE assumption. We require
T and F because in Ladner’s proof one gets long stretches of nothingness and we would like an
honest reduction to have something to map a positive instance to.

Uniformly hard sets are upward closed under these reductions.

Lemma 2.1 If A is uniformly hard and polynomial-time many-one honest reducible to B then B
1s also uniformly hard.

The polynomial-time many-one honest reductions give a partial order to the uniformly hard
sets. A “polynomial-time many-one honest degree” is an equivalence class under this ordering.

One might expect to prove that if SAT is not uniformly hard we can derive some interesting
collapse. But the possibility remains that at those inputs where SAT is hard, it could be very hard.
This possibility is exactly captured by generic oracles.

Theorem 2.2 Relative to any generic oracle, SAT and every other language in PSPACE is not
uniformly hard yet the polynomial-time hierarchy is infinite.

Proof. Let M be a relativized Turing machine such that for any A, M4 accepts a PSPACEA-
complete set L. We can assume without loss of generality that M A(:U) only queries strings in A
of length less than |x|.

By Lemma 2.1 we need only show that LY is not uniformly hard relative to generic oracles G.
Since M“(z) cannot query whether z is in A, the generic conditions ensure that

L7 [n,2" =G 1 [n,2"]

for infinitely many n. Since G is in P®, we have that L is not uniformly hard relative to G.

Since Yao’s proof [27] that the polynomial-time hierarchy is infinite relative to some oracle is
a finite extension argument, the polynomial-time hierarchy is infinite relative to all generics (see
also [9]). O

Uniformly hardness also has an important role in the area of “hardness versus randomness” [22,
5, 16]. One way to accurately state the recent result of Impagliazzo and Wigderson [16] is as follows.

Theorem 2.3 (Impagliazzo-Wigderson) If a language in E cannot be accepted by any 20(") _gjze
circuit family then every language in BPP is not uniformly hard.

3 Main Result

Theorem 3.1 If P = PSPACE then there is a minimal uniformly hard polynomial-time many-
one honest degree of a computable set.

Proof. We must construct a uniformly hard set A so that for all B <fn A, B is not uniformly hard.
To achieve this goal, we use an infinitary priority argument and satisfy the requirements below.

Let W, denote the e-th P-time language so that “z € W.” is computable in time |z|°.

In the following the variables n,m, k, s range over N and z, x,y over X*. To make A uniformly
hard we meet the requirements.

Re: (V¥ n)[AT [n] # We T [n]].

Here, V*° n denotes “for almost all n.” Let ¢, denote the e-th poly-time honest m-reduction, so
that for all z, ¢.(x) is computable in time |z|¢, and

(lpe(z)) > |a].
To make A have minimal degree we must meet the requirements below.
M. : (A<t o1 (A) V (9o 1(A) is not uniformly hard).
Initially we make A = ¥* and every string “active.” As we see below, as the construction

progresses we will delete elements from A. As usual, in the construction specified below and later,
languages are identified with their characteristic functions.

Meeting R. in isolation. Meeting the R, requirements is not too difficult. In isolation for each
length n > 2¢, we pick an active x of length n and make W,(z) # A(z).

Meeting M. in isolation. The construction will proceed in stages s € N. We will more or less at
stage s decide the fate of all strings z with |z| = s. Associated with M, will be a current parameter

k = k(e,s). We guarantee that k(e, s) > k(e,s+ 1) for all e and s. It might be that k(e,s) — oo or
it might come to a limit. The value k(e, s) goes to co indicates that . (A) is not uniformly hard.

Intuitive Overview The main idea is the following. We will try to divide the universe into sets of
strings [so,s0), [s1 = sk, s¥), ..., where [s;,s¥) = {2 : 5; < |2| < s¥}. We consider such half open
intervals in turn. We wish to see many strings z with the image ¢.(z) mapped to some length n
in the interval [s;, sf) Using the PSPACE=P assumption we can figure this out, and moreover,
we can restrict diagonalization to only those strings which are images (or as we see “associates of
images”) of strings in the domain of p.. Then we will argue that we can, again using P=PSPACE,
invert the . map to make A <P ¢ (A). The fact that there are many such images, still allows
us to make A uniformly hard.

One the other hand if there are not many then there are only few strings mapping into the
relevant interval. In this case, we will not use any such image for diagonalization (that is, inactivate),
and hence p.(A) looks like ¢¢(0) for that interval, anyway. In that case we will reset make the
relevant k bigger, and argue that if this re-occurs infinitely often, there will be infinitely many easy
intervals whose lengths dominate all polynomials, and hence ¢.(A) cannot be uniformly hard.

Details Suppose that we have just reset k' and now have a particular value in mind. At some stage
we will begin to look at M, again. Suppose that sg is such a stage. We choose sg large enough
such that slg < 2V50 and s > 2°.

Now we will act for M, at stage slg, and process those strings with lengths n where sp < n < slg .
Consider those strings = with so < |z| < sf. Let t,, be the number of active strings of length m,
at the stage that M, asserts control, and ¢ = min gtm- At the end of the stage we will

so<m<s
guarantee that there are at least w = t/(s§ + 1) active strings remaining at each of these lengths.

We see if there is any length n with sg < n < slg such that

e there exist at least t/(1 + (1/sf)) active strings 2 with |z| = n, and such that there exist a z
with ¢(z) = z.

There are two cases depending on whether the answer to e is yes or no.
Case 1. The answer to e is yes

For each m # n with sp < m < s5, delete all but the lexicographically least w many strings and
make these deleted strings inactive. Let B(n,s) denote the remaining strings of length n.

Now in order of m # n, and in lexicographic order of z € B(m, s), define the e-associate a.(x)
to be lexicographically least active string of length n. Then make a.(z) inactive. That leaves at
least 2w strings of length n. Associate in the same way the last w strings of length n with the first
w and make the first w inactive. Delete and make inactive all remaining strings of length n.

!That is, we have made k(e, s) into a different value overriding, and bigger than, all previous k(e, s") for s’ < s.

After this stage, all strings which have not been removed from A will either be active or of
the form a.(x) for some active x; that is associated with some active z. We will ensure that,
henceforth, any active x and its associate a.(z) will enter or leave A together. That is, our promise
is the following. For every active x,

x € Aiff a.(z) € A.

Now we reset s; (the new sg) to be 575, and at stage s1 repeat the above with s; in place of sg.
If the answer remains yes then we use s = s¥, etc.

Outcome k. Suppose then that the answer is always yes’. In that case, we claim that A <P
oo 1(A). To see this, to decide if 2 € A from the p_1(A) oracle, if |2| < so then use a table
lookup. Otherwise, compute i such that s; < |z] < sf. Using the assumption P = PSPACE, we
can determine the active strings and their associates as follows.

For a single e Initially all strings y with s; < |y| < sf are active. Hence for a single e, we merely
need to see if there is a length n with s; < n < s¥ for which there are at least 2% (1 + (s¥)~1) many
x with |z| = n and ¢.(q) = x for some ¢q. Determination of whether this is true involves counting
strings of length n, for each n in the relevant range, determining if there is a ¢ with p.(¢) = . But
since @, is honest, a PSPACE oracle can determine whether there is such a ¢ for each z and using
the PSPACE oracle, again, can determine the number of such x for each n3. Since the answer for
this k is always yes, there will be some least such n. then the assignation of associates from the
other B(m, s) involves lexicographic cycling through each B(m, s) and generating lexicographically
the members of B(n,s). Again this can be done with PSPACE.

Now if 2 is not active or an associate then z ¢ A. If z is an associate then z € A iff p_1(2) €
- 1(A), where ¢_1(2) is any element with ¢.(¢.!(z)) = 2 found using a PSPACE oracle. If z is
active then z € A iff p_(a(z)) € ¢.1(A). We call this process the outcome k.

Case 2. The answer to e is no. In this case our action is to delete all active strings z with
50 < |2| < sk such that 3z[pe(z) = z]. This leaves at least w active strings at each length.

We reset k(e,s + 1) > k(e,s). We will later attend M., again repeating these steps with a
suitably longer sg.

The outcome co. Suppose that this no case repeats itself infinitely often. The we claim that
- 1(A) is not uniformly hard. Let k be given. Compute a k; and s; sufficiently large that

(s; + 1)k < sf",
and for which the outcome is no. Consider the interval of lengths [(s; 4+ 1), (s; + 1)°¥]. We claim
that

-1 k
o (D) 1 [(si +1)% (se +1)%] =
2As we see in the next case, if the answer is ever “no” then we will reset k. Hence the only two possibilities are

“always yes” (for some k) or infinitely often “no.”
3Probably, one could do all of this with only a #P oracle.

0 H(A) 1T [(si+ 1), (s + 1)F].
The point is that by the |z|°-honesty of ¢, it can only be that
e ([(si + 1) (s + 1)) €
1 [s4, (si +1)€] C E*[si,sfi].

But since we make sure that there are no z in [s;, sf’”] with z in the range of ., we get the claim.

Therefore, for each k there is a m with 7 1(A) T [m, m*] = 71 () T [m, m*]. Hence, @, (A) is
not uniformly hard.

In summary In summary either we get the outcome & for some k € N, in which case A <! = 1(A),
or k(e,s) — oo, the so-called Iy outcome which witnesses the fact that ¢ !(A) is not uniformly
hard.

Combining Requirements.

The construction will proceed in stages. The actual action is determined by recursion. The
requirements are processed in some priority ordering, which, initially will be Ry, Mg, R1, M1,
As we will see this will change in the construction, at least for the M;. Any R. requirement,
will have at most e — 1 M, requirements of higher priority. When they stop processing strings
(by inactivating and deleting), then R, can choose the least unused string of length m left to
diagonalize. So it is simply a matter of ensuring that there are enough length m strings left. Thus,
basically there is no problem with any number of R; type requirements combining with a single
M,. This is because we retain at least at 2-V™ fraction of the active strings every time length m
is processed. We only bring in the R, requirements slowly. We ensure that length m is processed
for at most loglog m requirements.

The problems become more subtle when we consider more than one M, type requirements,
say M. and M with e < f. (Two requirements are representative, and the inductive strategies
continue in the obvious way.) First we will always ensure compatibility of the k(e, s) and k(f,s)
by ensuring that at each stage s they are towers of 2, and hence either k(e, s) is a root of k(f, s) or
vice versa. We will ask that they be distinct. We make the initial value of k(i,0) a tower of 2’s of
height 27 + 1.

Now what turns out to be important is the relative sizes of k. = k(e, s) and kf = k(f, s) rather
than their priorities, since we will use a dynamic priority ordering, in a sense to be described below.
To begin with suppose that we have k. < ky. Then we will have ky = k2 for some d. Both M, and
M will deal with the same sy in the sense of the isolated strategy. But, assuming that M, has

the k. outcome each time, the f-interval [sq, slgf | will consist of d e-intervals of the form

[s0, slge], [s1 = slge, s’f"’], vy [Sds SZ"’].

Call these intervals I, ..., 1.
Now we regard the output of the basic e-module applied to I; as producing equivalence classes

of strings with two strings, one active and one its associate. Consider the active string the repre-
sentative of this class.

In future applications of the basic modules for the R and M requirements, treat any query to
an element of an equivalence class as a query to the active representative. If the representative
is deleted then so should all of the other elements in the class. This may in turn yield larger
equivalence classes with still one active representative.

Thus, at the very stage t = s;° = slgf we get to process for My, all of the Iy, ..., I; will have
been e-processed, and many strings will have been inactivated, deleted, or associated. M simply
deals with this smaller universe, seeing each pair as a single element.

To complete the description of the construction, we remark that if the answer to e is no, we will
reset k(e,s) (or k(f,s) as the case may be) to be the next largest unused tower of 2. We also reset
so to start at the next appropriate point for it. For instance, if k(e, s) was reset while processing
(55, s?e), because the answer to e was no then we would reset sy for it to be sgf . For convenience,
the tower of 2’ we reset k. to be determines its new priority which means when it gets processed.
Thus if the new k. is &’ then we will make M, now have priority below R;. Note that if the k(e,)
has a limit then this causes no problem. There is a fixed depth of higher priority requirements that
get processed before it and hence a PSPACE oracle can determine the active elements, equivalence
classes etc.

If the k(e, s) has no limit, then the result is infinitely often the same as having () as an oracle.

There are no problems extending this to arbitrary depths of requirements, and the calculation
of the exact numbers merely obscures the proof. O

4 Future Directions

We show that Ladner’s nonminimality result appears to require creating large gaps of easiness.
There are several directions one can take this research including

e Weaken or eliminate the P = PSPACE assumption.

Find a complexity theoretical hypothesis (such as a strong one way hypothesis) for which
there are no languages minimal in our sense.

Look at density issues among the uniformly hard sets. First one needs a good definition as
to when one set is “uniformly harder” than another.

Look at decidability in the uniformly hard degrees.

References

[1] K. Ambos-Spies, “On the structure of polynomial time degrees” in STACS 84, Lecture Notes
in Computer Science, Vol. 166 (1984) 198-208, Springer-Verlag.

10

2]

[3]

[10]

[11]

[12]

[13]

[14]

K. Ambos-Spies, “On the structure of the polynomial time degrees of recursive sets,” Technical
report 206 (1985), Abteilung Informatik, Universitdt Dortmund.

K. Ambos-Spies, “Minimal pairs for polynomial time reducibilities,” in Computation and Proof
Theory, Lecture Notes in Computer Science, Vol. 270 (1987) 1-13.

K. Ambos-Spies and A. Nies, “The Theory of The Polynomial Time Many-One Degrees is
Undecidable,” STACS 1992, 209-218.

L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential simulations unless
EXPTIME has publishable proofs. Computational Complexity, 3:307-318, 1993.

J. Balcdzar and J. Diaz, “A note on a theorem of Ladner,” Information Processing Letters,
Vol. 15 (1982), 84-86.

J. Balcazar, J. Diaz, and J. Gabarro, Structural Complexity Vol. 1 and 2 (1987,1989), Springer.

L. Berman and J. Hartmanis, On isomorphism and density of NP and other complete sets,
SIAM Journal on Computing, Vol. 1 (1977), 305-322.

M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Proceedings of the 28th
IEEE Symposium on Foundations of Computer Science, pages 118-126. IEEE, New York, 1987.

P. Chew and M. Machtey, “A note on structure and looking back applied to the relative
complexity of computable sets,” J. Comput. Sys. Sci., Vol. 22 (1981), 53-59.

R. Downey, “Nondiamond theorems for polynomial time reducibility,” J. Comput. Sys. Sci.,
Vol. 45 (1992) 385-395

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
N P-Completeness, (1979), Freeman.

J. Geske. On the structure of intractable sets. PhD thesis, lowa State University, Ames, Iowa,
1987.

S. Homer, “Some properties of the lattice of NP sets,” in Workshop on Recursion Theoretical
Aspects of Computer Science, Purdue University, (1981) 18-22.

S. Homer, “Minimal degrees for polynomial reducibilities,” Journal of the ACM, Vol. 34 (1987),
480-491.

R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomizing
the XOR lemma. In Proceedings of the 29th ACM Symposium on the Theory of Computing.
ACM, New York, 1997, 220-229.

R. Karp, “Reducibility among combinatorial problems,” in Complezity of Computer Compu-
tations, (R. Miller and J. Thatcher, eds) (1972), 85-104, Plenum Press.

R. Ladner, “On the structure of polynomial-time reducibility” J. Assoc. Comput. Mach., Vol.
22 (1975), 155-171.

11

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A

R. Ladner, N. Lynch and A. Selman, “A comparison of polynomial time reducibilities,” The-
oretical Computer Science, Vol. 1 (1975), 103-123.

L. Landweber, R. Lipton and E. Robertson, “On the structure of NP and other complexity
classes,” Theoretical Computer Science, Vol. 15 (1981), 181-200.

K. Melhorn, “Polynomial and Abstract Subrecursive Classes,” J. Comput. Sys. Sci. 12 (1976)
147-178.

N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer and System
Sciences, 49:149-167, 1994.

K. Regan, “On diagonalization methods and the structure of language classes,” in Fundamen-
tals of Computation Theory, (M. Karpinski, ed.) Springer Verlag Lecture Notes in Computer
Science, Vol. 158 (1983), 368-380.

U. Schoning, “A uniform approach to obtain diagonal sets in complexity classes,” Theoretical
Computer Science, Vol. 18 (1982), 95-103.

J. Shinoda and T. Slaman, “On the Theory of PTIM E Degrees of Recursive Sets, J. Comput.
Sys. Sci. Vol. 41 (1990), 321-366.

R. A. Shore and T. A. Slaman, “The p-T' degrees of the recursive sets: lattice embeddings,
extensions of embeddings and the two-quantifier theory,” Theoretical Computer Science, 97,
(1992), 763-784.

A. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of the 26th IEEE
Symposium on Foundations of Computer Science, pages 1-10. IEEE, New York, 1985.

Appendix

For completeness and to aid discussion we give two proofs that if P % NP then there exists an
incomplete set A in NP — P.

Both proofs have a similar set up. First we assume that P # NP. Every NP-complete language

is not in P with this assumption and we will focus on one of them, namely SAT, the language of
satisfiable Boolean formula.

We have two sets of requirements to fulfill. Let My, Ms, ... be an enumeration of deterministic

Turing machines clocked so that the machine M;(z) runs in time |z|° and captures all of the
languages in P. We also have a similar list f; of the polynomial-time computable functions.

2. S;: For some z, x € SAT and f;(z) € A or x ¢ SAT and f;(z) € A.

In addition we need to guarantee that A is in NP.

12

A.1 Proof by blowing holes in SAT

Our set A will be defined using a function f by
A={x |z e SAT and f(|z|) is even}.
Note that if we make f(n) computable in polynomial in n time then A will be in NP.

The function f will be set to the current stage of the construction. Intuitively in stage 2¢, we
keep f(n) = 2i for large enough n until condition R; is fulfilled. If R; is never fulfilled then the set
A will be equal to L(M;) and a finite difference from SAT condradicting the assumption that P #
NP.

In stage 2i + 1 we keep f(n) = 2i + 1 until condition S; is fulfilled. If S; is never fulfilled then
A will be finite and SAT reduces to A via f; which would put SAT in P, again contradicting the
fact that P # NP.

The trick is to do this while keeping f polynomial-time computable. We do this by delayed
diagonalization, i.e., we do not start a new stage until we see the requirement for the previous stage
has been fulfilled on inputs so small we can test it. Thus we do not start a new stage until well
after the old requirements are fulfilled.

We now formally define f(n) inductively in n. Let f(0) = f(1) = 2. For n > 1 we define
f(n+1) as follows: If log?™ n > n then let f(n+1) = f(n). Otherwise we have two cases:

f(n) = 2i: Check to see if there is an input z, |z| < logn such that either

1. M;(x) accepts and either f(|z|) is odd or x is not in SAT, or
2. M;(z) rejects and f(|z|) is even and z is in SAT.

If such an x exists then let f(n+ 1) = f(n) + 1 otherwise we let f(n+ 1) = f(n).
f(n) = 2i + 1: Check to see if there is an input z, |z| < logn such that either

1. z is in SAT and either f(|f;(x)]) is odd or f;(z) is not in SAT, or
2. x is not in SAT and f(|f;(z)]) is even and f;(x) is in SAT.

If such an x exists then let f(n+ 1) = f(n) + 1 otherwise we let f(n+ 1) = f(n).

Since to compute f(n) we only examine x with |z| < logn and
2l < login < 1og/®™ n < f(n),

we can compute f(n) in time polynomial in n. It is straightforward to check that f(n) does not
increase until the corresponding reqiurements if fulfilled and that if f(n) remains constant for all
large n then we will have violated the P # NP assumption.

13

A.2 Proof by Padding SAT

Here the idea is to encode SAT questions of length n on inputs of length f(n). Define the language
L as
L = {¢017M=I"=1 | 4 in SAT, and |¢| = n}.

We will create a polynomial-time computable in n function f large enough so that L is not NP-
complete but not so large as to make L in P.

We will keep f(n) = n long enough to fulfill R; and then let f(n) = n‘*l.

We define formally define an algorithm for computing f(n). Let ¢ = 1 initially. For each n in
order we do the following: Let f(n) = n’. Check to see if there is an input =, |z| < logn such that
either

1. M;(z) accepts and x is not in L, or

2. M;(x) rejects and x is in L.

If so let i =i + 1 otherwise leave ¢ unchanged. Go onto the next n.
Since we are only checking very small x, we can compute f in polynomial time in n.

Suppose that L is in P. We then have that L = L(M;) for some i so f(n) = n’ for suitably large
n. But then we have an easy reduction from SAT to L and SAT would also be in P, violating our
assumption.

So we have fulfilled all of the R; requirements and ¢ goes to infinity. Suppose some requirement
S; is not fulfilled. We then have a function f; that reduces SAT to L. We want to show that we
can now compute whether ¢ is in SAT in polynomial time.

Since f; runs in time bounded by n/ we have that for all ¢, |f;(#)| < |¢|. There must be some
ng such that for all n > ng, f(n) = n* for some k > j. We hardwire satisfiability for all inputs of
length up to ng.

Suppose we have a formula ¢ with |¢| > ng. If f;(¢) is not in the range of f then f;(¢) is not
in L so ¢ is not in SAT. Otherwise, f;(¢) = 01/ (M =m=1 where m = || and ¢ in SAT if and only
¥ is in SAT. We have f(m) = |f;(#)] < |o]7 so || = m < [p]7/* if f(m) = mF. Since |¢| > no
we have k > j so] < |¢|. If || < np then we know whether ¢ and thus ¢ is in SAT. Otherwise
we apply this algorithm recursively to . Since || gets smaller each step the algorithm runs in
polynomial time.

14

